

Design, Construction and Standardisation of GRAVITY WATER SUPPLY SYSTEMS

in rural villages in Sri Lanka

LIBRARY IRC
PO Box 93190, 2509 AD THE HAGUE
Tel.: +31 703068980
Fax: +31703589964
BARCODE: 14731
LO:
221
qYDE

Published by

HELVETAS, Swiss Association for Development and Cooperation Programme Office - Sri Lanka

Head Office
HELVETAS
St. Moritzstrasse 15
Postfach
CH-8042 Zürich (Switzerland)

Cover Photo
Gravity Water Supply System in Hippola Village, Kandy District (by Sarvodaya Rural Technical Services)

TABLE OF CONTENTS

PREFACE 5
PARTI: DESIGN
1 INTRODUCTION 7
2 HEALTH ASPECTS 8
2.1 General Remarks 8
2.2 Water-Related Diseases 8
3 HYDROLOGIC CYCLE 9
4 WATER SOURCES 11
4.1 Ground Water 11
4.2 Springs 11
4.3 Streams 11
4.4 Quality of Water 11
5 HYDRAULICS 13
5.1 General Remarks 13
5.2 Energy 13
5.3 Measure of Energy in a Water System 13
5.4 Fluid Statics 15
5.5 Fluid Dynamics 16
5.6 Friction 17
6 COMPONENTS OF A GWSS 19
6.1 General Remarks 19
6.2 Intake 19
6.2.1 Spring Catchment 19
6.2.2 Stream Intake 20
6.3 Sedimentation Chamber / Silt Box 20
6.4 Break Pressure Tank (BPT) 20
6.5 Storage Tank 21
6.6 Distribution Chamber 21
6.7 Valve Box 21
6.8 Pipelines 21
6.9 Standposts 21
6.10 Installations 22
6.10.1 Air Valves / Air Release 22
6.10.2 Washouts 22
6.10.3 Sectional Valves 22
7 DESIGN GUIDELINES 23
7.1 General Remarks 23
7.2 Summary of Design Criteria 23
7.3 Flow Chart of Design Procedures 24
7.4 Preliminary Survey 25
7.5 Topographic Survey 25
7.5.1 General Remarks 25
7.5.2 Situation Survey 25
7.5.3 Hydraulic Survey 26
7.6 Future Design Demand 27
7.6.1 Design Period 27
7.6.2 Population Growth Rate 27
7.6.3 Population Growth Factor 27
7.6.4 Water Demand 27
7.6.5.AvailableWater 27
7.6.6 Feasibility of Project 28
7.7 Flow at Standposts 28
7.8 Velocity of Flow in Pipelines 29
7.9 Calculation of the Size of Structure 30
7.9.1 Sedimentation Chamber / Silt Box 30
7.9.2 Distribution Chamber 30
7.9.3 Storage Tank 31
7.9.4 Break Pressure Tank (BPT) 31
7.10. Design of Pipeline 32
7.10.1 Types of Pipeline 32
7.10.2 Pressure Head in Pipes 32
7.10.2.1 Static Pressure Head 32
7.10.2.2 Residual Head (Dynamic Pressure Head) 32
7.10.3 Hints on Pipeline Design 36
7.10.4 Pipe Combination 36
7.10.5 Joining of Pipelines 37
7.11. Drawings 38
8 DESIGN EXAMPLE 39
8.1 General Remarks 39
8.2 Feasibility of Project 39
8.3 Flow Rate at Standposts / Taps 40
8.4 Sedimentation Chamber / Distribution Ratio 41
8.5 Distribution Chamber 41
8.6 Storage Tank 42
8.7 Break Pressure Tank 42
8.8 Hydraulic Calculation of Pipelines 43
8.8.1 Source Lines 43
8.8.2 Main Lines 44
8.8.3 Distribution Lines 44
8.9 Drawings 46

PARTII: CONSTRUCTION AND STANDARDISATION

1 INTRODUCTION 51
2 SPRING CATCHMENT 51
2.1 General Remarks 51
2.2 Types of Springs 51
2.3 Protection Zone 52
2.4 Construction of Catchment for a Gravity Spring 52
2.4.1 Excavation 53
2.4.2 Design and Construction of Catchment 54
2.4.2.1 Barrage (Dam) 54
2.4.2.2 Permeable Structure / Drain 54
2.4.2.3 Cover of Catchment / Inspection Chamber 55
2.4.2.4 Earth Cover of Catchment 55
2.4.3 Drawings of Typical Gravity Spring Catchment 56
2.4.3.1 Spring Catchment in Line 56
2.4.3.2 Spring Catchment in V - or T - Form 57
2.4.3.3 Catchment of various Small Springs 58
2.4.3.4 Catchment of Springs in Rocky Areas or Steep Hills 59
2.5 Artesian Springs 60
2.5.1 General Remarks 60
2.5.2 Catchment of Artesian Springs 60
2.5.3 Artesian Springs in Hard, Stable Soil 60
2.5.3.1 Excavation 60
2.5.3.2 Catchment of Artesian Springs 61
2.5.4 Artesian Springs in Loose Soil 61
2.6 Common Mistakes Occurring in Spring Catchments 62
3 COLLECTION CHAMBER AND / OR SEDIMENTATION CHAMBER / SILT BOX 63
4 STORAGE TANK 63
4.1 General Remarks 63
4.2 Construction Schedule for Ferrocement Storage Tanks 64
5 BREAK PRESSURE TANK (BPT) 65
6 DISTRIBUTION CHAMBER 65
7 VALVE CHAMBER 66
8 PIPELINE CONSTRUCTION 66
8.1 General Remarks 66
8.2 Trench Works 66
8.2.1 General Remarks 66
8.2.2 Size of Trenches 67
8.2.3 Laying of Pipes 67
8.2.4 Backfilling of Trenches 68
8.2.5 Thrust-Blocks 68
8.2.6 Marking of Pipeline 70
8.2.7 Difficulties in Trench Work 71
8.2.7.1 Trench Work in Hard or Rocky Ground 71
8.2.7.2 Stream or Gully Crossings 71
9 TAPSTANDS 72
10 INSTALLATIONS 72
10.1 Air Release / Anti Vacuum Valve 72
10.2 Washouts 74
10.3 Sectional Valves 74
APPENDIX
Appendix 1: References and Bibliography 76
Appendix 2: Forms A - M 71
Appendix 3: Standard Drawings 77

PREFACE

In 1978, a fruitful partnership commenced between the Sarvodaya Rural Technical Services (SRTS) and HELVETAS. In the beginning a small but motivated unit supported the Sarvodaya Shramadana Movement by providing training to young men and women in agriculture and artisan skills.

Initially SRTS was engaged mostly in the northern districts of Sri Lanka,but with increasing numbers of skilled staff its activities were successfully extended to the other parts of the island. Over the years there was a shift from training and agricultural activities towards more technical (rural infrastructure) projects. SRTS specialised in assisting the rural communities in improving the infrastructure of their villages through the construction of Gravity Water Supply Schemes, Hand-Dug Wells,Bridges, Culverts, Latrines etc.
The large number of similar projects implemented by SRTS made it advisable to standardize the design and construction procedures. The manuals and standard drawings which were consequently prepared by the senior SRTS staff together with the HELVETAS engineers reflect the experiences gained throughout the years.

In August 1991, HELVETAS decided to update and to revise all these technical papers with the broader aim to make them available not only to SRTS but also to other organisations, institutions or individuals interested and engaged in this field of work. As a result of these efforts the following manuals are now available:
"Construction of Latrines In Rural Villages in Sri Lanka" (also available in Sinhala and Tamil)

- "Construction of Hand-Dug Wells in Rural Villages in Sri Lanka" (also available in Tamil and Sinhala)
- "Design, Construction and Standardisation of Gravity Water Supply Systems in Rural Villages in Sri Lanka"
(available also in Sinhala)
It should be noted that these manuals are technical handbooks for those involved in the planning and construction of hand dug wells, gravity water supply systems and latrines. Other related aspects of such projects, like health education, participatory planning and involvement of the villagers in the construction phase or maintenance of completed projects are only touched or not discussed at all.
We are grateful to all who contributed to the completion of these manuals and would appreciate comments or suggestions for further improvements. For any inquiries you can contact our office under the following address:

1 INTRODUCTION

The need of water is common to all living things. Human beings' health and wellbeing depend upon an adequate water supply. Where water is inadequate, life is a struggle.
Besides the traditional hand-dug wells, gravity-fed water supply schemes are an excellent option to cover the demand for water in rural villages in Sri Lanka. Water supply schemes which necessitate the use of pumps are hardly sustainable in rural areas although they are a necessity in urban areas. Gravity-fed Water Supply Schemes (GWSS) can easily be built in cooperation with local communities. Although this manual is not about community development but about technical matters, it has to be emphasized that the active participation of the future users of a GWSS is a must. But community participation alone cannot guarantee a sustainable project. More important is Operation and Maintenance ($\mathrm{O}+\mathrm{M}$) of a running system. Very often villages participated successfully in the construction of a GWSS but they failed to run and maintain it. It needs a well established and efficient organisation at village level to organize $\mathrm{O}+\mathrm{M}$.
From our experiences in Sri Lanka we learned that a community contribution of around 20% of the total cost (including overhead and capital cost) can be reasonably expected.

It requires some technical know-how to design a GWSS. Most of this know-how is contained in this manual. Nevertheless, a potential designer of a GWSS should have at least some basic experience in construction works and should have an academic background that allows him/her to do some computations of a medium level of difficulty.

This part of the manual discusses the following points:

- Health Aspect of Water
- Hydrology
- Water Sources (1)
- Hydraulics
- Design Guidelines
- Design Example

In the second part of this manual you find details about construction of GWSS and all standard drawings of the different structures concerned with GWSS.

The Appendix to this manual includes references and a bibliography for further reading

[^0]
2 HEALTH ASPECTS

2.1 GENERAL REMARKS

As mentioned in the introduction to this manual, the need of water is common to all living things. Water was always considered to be very important for human beings but its importance to health is a more recent realization. During the last hundred years or so it was discovered that inadequate or contaminated water is an important reason for the spread of water-related diseases.

2.2 WATER RELATED DISEASES

Water-related diseases can be listed as follows:

- Water-borne diseases occur when a pathogen in water is drunk by a person who then becomes infected. Typical diseases are cholera and typhoid but also others such as infectious hepatitis, diarrhoea and dysentery.
- Water-washed diseases are directly related to domestic and personal hygiene and can be drastically reduced if ample water were available for washing and hygiene. Scabies, tropical ulcers and infantile diarrhoea are examples.
- Water-based diseases are parasitic diseases, where the organism causing the sickness spends a part of its life cycle in an aquatic host, for example guinea worm or bilharzia (schistosomiasis).
- Insect-vector diseases are those which are spread by insects that breed in water, for example malaria, dengue, filaria.

Water-borne and water-based diseases can be drastically reduced by providing clean and safe drinking water.

Water-washed diseases can be prevented by providing sufficient water for domestic hygiene and personal washing.

Insect-vector diseases cannot be directly affected by the construction of a GWSS, but there can be indirect effects like the cleaning up of infected areas around traditional water holes.
Class two and three of the above diseases can also be reduced/prevented by improved, safe disposal of excreta. Please refer to our manual "Construction of Latrines in Rural Villages in Sri Lanka".

Obviously, a GWSS can only benefit its users if it is designed and constructed in a way to protect the water from contamination, and to allow easy maintenance. The technical details of properly designing a GWSS that will benefit its users are dealt with in the following chapters of this manual.

(3) HYDROLOGIC CYCLE

Hydrologic Cycle

In above drawing of the hydrologic cycle you can see the circulation of water in its liquid or vapour state. We will concentrate on the parts of the hydrologic cycle that are of importance to GWSS.

Some part of the rain falling to the earth evaporates. Some runs off in streams and rivers. Some infiltrates the ground and is used by vegetation or sinks below root level through porous soil until it reaches an impermeable layer. Under the force of gravity, the water finds its way downhill along the impermeable formation until it either emerges as springs or returns to the sea. It is this occurrence of springs that is of importance to the designer of a GWSS.

Below there is another drawing which illustrates the occurrence of springs:

Hydrologic Diagram of a Spring

It is important to realize that the water table can vary drastically during the year. It will be much higher during or just after the rainy season than during the dry season. It is, therefore, of utmost importance to observe a spring for at least one year before you decide on its use as the source of a GWSS. See more about springs in chapter 4.2 Springs.

4 WATER SOURCES

4.1 GROUND WATER

The water which, under the force of gravity, flows downhill along an underground impermeable layer, is called ground water. As ground water flows through the aquifer (water bearing layer) there is a continuous filtering process going on. Most of the suspended particles will be removed and even bacterial pathogenes will be eliminated after a certain distance, generally less than 30 m .

Ground water can only be used for a GWSS when it appears in a spring. Otherwise it has to be extracted from the aquifer through a well.

4.2 SPRINGS

A place where ground water seeps to the surface without artificial help is called a spring. The flow of a spring is generally less than two litres per second but can be much bigger in rare cases. The flow of a spring depends on:

- Intake area (does not necessarily correspond with the topographical basin)
- Annual rainfall
- Percolation rate of water through the aquifer
- Storage capacity of aquifer
- Thickness of stratum which covers the aquifer

The flow of springs can vary quite substantially during the year. They tend to lag behind the seasonal rainfall patterns. Sometimes a spring is not a real spring but just water of a small stream that went underground for a short distance and is reemerging. Obviously, such a "spring" should not be tapped for a GWSS. But usually, spring water, due to the filtration process in the aquifer, is free of pathogenes and is an ideal source of water for a GWSS.

4.3 STREAMS

Generally, streams are not safe sources for drinking water. It should be considered only when there is no other source available to meet the demand and the water is safe (treatment might be required).

4.4 QUALITY OF WATER

A GWSS will only benefit its users when the delivered water is safe for drinking. That means it must not contain any pathogenes which could be a risk to health. The World Health Organisation (WHO) has studied problems related to standards for drinking water and published various recommendations. Moreover, the National Water Supply and Drainage Board (NWSDB) of Sri Lanka has also published a standard for drinking water.

However, it is beyond the means of most rural villages to meet all demands regarding above mentioned standards for the quality of drinking water. We do not want to go too much into the details of these standards but we would like to make some basic remarks towards the quality of water used in GWSS. One has to distinguish between bacteriological and chemical standards.

- Bacteriological Standard: Water should not contain any harmful organisms. The presence of coliforms in water is used as an indicator that the water is contaminated with faecal material.

Chemical Standards: These standards usually only apply for treated waters. However, attention has to be given to some toxic chemical substances contained in untreated water (e.g. remainder of agro-chemicals). Moreover, water that is safe for drinking can be very aggressive towards iron and cement (therefore our recommendation to use PVC instead of steel pipes).

The local population in rural villages in Sri Lanka usually knows through experience whether the water of a particular source is drinkable or not. If there are any doubts about the quality of the water you want to use for a GWSS, have it tested in one of the existing laboratories in Sri Lanka. Remember that the test samples have to reach the laboratory within a few hours, that they have to be protected from sunlight and kept cool. It is not advisable to test the water on your own with a test-kit.

For further reading please refer to the references in the Appendix to this manual.

Water Treatment

For the time being, there is no practical water treatment system which could be broadly used in rural villages in Sri Lanka. Even slow sand filters, of which a few are installed in Sri Lanka, require regular maintenance, which is beyond the means of most rural communities. Thus emphasis must be put on locating the cleanliest possible source of drinking water and an adequate protection of such a source. For further reading about water treatment, please refer to the references.

5 HYDRAULICS

5.1 GENERAL REMARKS

On the following pages we will discuss the basic hydraulic principles of pipeline design. It will not be an in-depth analysis of hydraulics; fundamental theories, like the Equation on Continuity or Bernoulli's Equation will not be covered. Please refer to the references and bibliography in the Appendix to this manual for further reading if you want to study hydraulics in greater depth.

The basic principles of pipeline design have been presented in such a way as to be understood by a person who has never been taught hydraulics. Nevertheless, as a user of this manual, please do not go further before you really understand the following basic principles of hydraulics.

5.2 ENERGY

Whenever water is moved, uphill, downhill or horizontally, it requires energy. This energy can be provided by a pump for example, or, in gravity-fed water supply schemes, by gravitational energy which is determined by the relative elevation of all points in a water system. For a given system, there is only a fixed, specific quantity of gravitational energy available. As water flows through pipes, fittings, tanks etc. some energy is lost to the system, dissipated by friction. A well designed GWSS preserves energy and allows to move the desired quantity of water through the pipelines.

5.3 MEASURE OF ENERGY IN A WATER SYSTEM

Pressure is defined as the force that a quantity of gas or liquid has on any surface it touches. It is measured by the amount of force that is exerted over a particular area. In our case we are interested in the pressure of a column of water. But first we have to clarify the measures and units used (according to the international metric system):
$A=$ Area, \quad measured in sq. millimetres $\left[\mathrm{mm}^{2}\right]$, sq. centimetres $\left[\mathrm{cm}^{2}\right.$] or sq . metres [m^{2}]
F = Force, is the effect of gravitation ($\mathrm{g}=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$) on mass (kg),
Force $=\mathrm{m} \times \mathrm{g}=1 \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=9.81 \frac{\mathrm{~kg} \mathrm{x} \mathrm{m}}{\mathrm{s}^{2}}=9.81 \mathrm{~N}$,
measured in Newtons [\mathbf{N}] or kilo-Newtons [$\mathbf{k N}$]. For practical use, 1 kg is considered to be equal to 10 N , or $1000 \mathrm{~kg}=1$ to is considered to be equal to 10 kN .
$\mathbf{P}=$ Pressure, measured in Newtons per sq. millimetre [$\mathrm{N} / \mathrm{mm}^{2]}$], kilo-Newtons per sq. metre [$\mathbf{k N} / \mathbf{m}^{2}$] or Pascal [Pa] resp. kilo-Pascal [kPa].
$1 \mathrm{~N} / \mathrm{m}^{2}=1 \mathrm{~Pa}\left(\approx 0.1 \mathrm{~kg} / \mathrm{m}^{2}\right.$ or $\left.1 \times 10-5 \mathrm{~kg} / \mathrm{cm}^{2}\right)$
$1 \mathrm{kN} / \mathrm{m}^{2}=1 \mathrm{kPa}\left(\approx 100 \mathrm{~kg} / \mathrm{m}^{2}\right.$ or $1 \times 10-{ }^{-2} \mathrm{~kg} / \mathrm{cm}^{2}$)

Pascals are also used to classify PVC pipes. The expression ISO Type 1000 means: pipes conferring to the International Standard Organisation and withstanding a pressure of 1000 kPa .

The pressure a column of water exerts over a particular area depends only on the height of the column but not on the geometric shape of the column. The general formula is:

$$
P=\frac{F}{A}
$$

$$
P=\frac{F}{A}=\frac{1}{100}=0.01 \mathrm{~N} / \mathrm{mm}^{2}=\underline{\underline{10 \mathrm{KPA}}}
$$

As it is rather laborious repeatedly to calculate the water pressures, in hydraulic work another, much easier, practice was introduced:
The height of a water column is called head and represents the amount of gravitational energy contained in the water of the column. It is measured in metres.
In the above example, instead of calculating a pressure of $0.01 \mathrm{~N} / \mathrm{mm}^{2}$ or 10 kPa , we can simply say, that there is one metre of head. Similarly a pressure of 1000 kPa is reported to as 100 m of head.

Comparison of different measures for pressure:

Pa	$\mathrm{N} / \mathrm{mm}^{2}$	m of head	$\mathrm{kg} / \mathrm{cm}^{2}$	
1 Pa	1	1×10^{-6}	$\approx 1 \times 10-4$	$\approx 1 \times 10-5$
$1 \mathrm{~N} / \mathrm{mm}^{2}$	1×10^{6}	1	≈ 100	≈ 10
1 m of head	$\approx 1 \times 10^{4}$	$=1 \times 10-2$	1	0.1
$1 \mathrm{~kg} / \mathrm{cn}^{2}$	$\approx 1 \times 10^{5}$	≈ 0.1	10	1

The $\approx-$ symbol is used because the earth's gravity, expressed by the factor g , is not exactly 10 but $9.81 \mathrm{~m} / \mathrm{s}^{2}$.

5.4 FLUID STATICS

The water pressure at a particular depth is directly related to the vertical distance from that depth to the level of the surface and is not affected by any horizontal distance.

If small tubes were inserted into a pipeline, as shown in the drawing below, the water level in each tube would rise exactly to the level of the water surface in the tank or to the static level. The pressure at the bottom of this tube is called the static head.

Point	A	B	C
Static Head [m]	10	19	32

5.5 FLUID DYNAMICS

If the valve at point C is opened partially (and the tank refilled so that the static level remains constant) the water levels in the tubes will change according to the drawing below:

Dynamic Equilibriums

The water level in the tubes forms a new line for each flow. For a constant flow, the line formed will remain steady. The system is in a dynamic equilibrium. The line formed by the water level in the tubes is called the hydraulic grade line or HGL. The hydraulic grade line represents the energy levels at each point along the pipeline. For any constant flow there is a specific HGL. The vertical distance between the pipeline and the HGL is the measure of pressure head, as given in the above drawings in point C .

5.6 FRICTION

As water flows through pipes, fittings, tanks, etc. some energy is lost to the system, dissipated by friction. Any obstruction to the flow causes frictional loss of energy. The amount of energy lost depends on two major factors. There are many other, minor factors, but for our purpose it is enough to mention just the two major factors:

- Velocity of flow
- Roughness of pipes, fittings, etc.

Generally one can say that frictional losses are:

- Directly proportional to the length of the pipeline
- Directly proportional to the roughness of the pipe's interior surface
- Approx. proportional to the square of velocity or flow

While designing a water system, it is important to know how much energy (or head) will be lost to friction at any point of the system. The easiest method to calculate the frictional headloss is to make use of the frictional headloss tables. These tables show the amount of frictional headloss per unit length of pipe, for a specific flow.

Flow: Quantity of water that moves through a pipeline within one second ($1 / s$).

The headloss tables express the loss as metres of headloss per 100 metres of pipe length or as $\boldsymbol{m} / \mathbf{1 0 0} \boldsymbol{m}$ or \%. Such a headloss table is included in the Appendix to this manual (Form K). Remember that there are different headloss tables for different materials depending on the roughness of these materials (e.g. asbestos cement, PVC, GI, etc.)

The frictional headloss of flows through fittings such as elbows, reducers,tees, etc. are given as equivalent pipelengths. That means the headlosses are calculated by taking into consideration an equivalent pipe length that creates the same amount of frictional headloss. For fittings this is commonly given as L/D Ratio (length/diameter ratio). Below a few examples of L/D ratio:

Fitting		L/D Ration
Tea	run - side	68
	run - run	27
Elbow	single	33
	double, same direction	66
	double, opposite direction	132
	double, three dimensional	99
Union		7
Gate valve (fully open)		7
Screened entrance		150
Free entrance		29
Reduction		15

Example: What is the equivalent pipe length of a 32 mm elbow (single)? L/D Ration $=33: 33 \times 32=1.056 \mathrm{~mm}=\underline{\underline{1.06 m}}$

Generally, the headloss of fittings is very small compared with the headloss in a long pipeline. Therefore, unless several fittings are installed close together, the headloss of fittings can be neglected when the pipe length is more than 1000 diameters, e.g. more than 20 metres for a 20 mm pipe, etc.

6 COMPONENTS OF A GWSS

6.1 GENERAL REMARKS

On the following pages we will introduce you to the components of a gravity water supply scheme. Each component will be explained briefly and there will be references to the chapters where you can find more details about the particular component. Below you will first find a schematic drawing of a GWSS with all its components:

to Storage Tank 2

6.2 INTAKE

6.2.1 SPRING CATCHMENT

As explained in chapter 4.2 Springs, a place where ground water seeps to the surface is called a spring. The flow of a spring has to be tapped and the structure of tapping is called spring catchment. A spring catchment is the heart of a GWSS and therefore utmost care has to be taken while designing and constructing the catchment. Due to the uniqueness of each source, there will never be a standard design for a catchment that can be built for every system. However, there are some standard design features which have to be considered before designing a particular catchment. Please refer to the second part of this manual, chapter 2 Spring Catchment for more details.
It is obvious, that the catchment area has to be protected to prevent a spring from becoming polluted. The area just above and upstream of the catchment needs particular care. The size of the protection zone depends on the thickness and nature of the covering stratum. In any case, the radius of the protected area must not be smaller than 10 m . Within this area no farming, no domestic animal grazing, no rubbish pits, etc. are allowed. The area just above the catchment should be planted
with grass and outside of a radius of about 10 m the protection zone should be afforested. It is advisable to insist that the protection zone is fenced and protected just after the completion of the catchment and before any other works are started.

There is one more important point to be kept in mind when talking about a spring as a source for a GWSS: waterrights. Before any works are started, the water rights of those people dependent upon the water of the new GWSS spring have to be settled first.

6.2.2 STREAM INTAKE

As mentioned in chapter 4.3 Streams, water from streams or rivulets is generally not safe for drinking. Nevertheless, sometimes there is no other source available and a stream intake has to be constructed. It is outside the immediate scope of this manual to deal in detail with stream intakes. In case you want to know more about this topic please refer to the references given in the Appendix to this manual.

6.3 SEDIMENTATION CHAMBER / SILT BOX

Water from large springs contains suspended particles. Such particles should be removed by allowing the water to sit quietly for a certain time in a sedimentation chamber or silt box. Such a silt box should be built as close to the catchment of the spring as possible. Very often the silt box can also serve as a collection chamber. If more than one source is tapped, each source should have its own pipeline to the silt box/collection chamber for inspection purposes. Small particles need some time to sink downwards under the influence of gravity. A settling period of 20 minutes will allow fine silts and larger particles to settle in the silt box. We therefore recommend: detention time $=\mathbf{2 0}$ minutes. The detention time is the period of time the water spends in the silt box.

For more details please refer to 7.9.1 Sedimentation Chamber / Silt Box.

6.4 BREAK PRESSURE TANK (BPT)

If the differences in elevation cause too high a static pressure in a pipeline, Break Pressure Tanks have to be constructed. Please refer to 7.10.2 Pressure Head in Pipes for permissible pressure heads. Break Pressure Tanks permit the water to discharge freely into the atmosphere thus reducing the static pressure head to zero. Any tank with an open water surface (e.g. storage tank, silt box, distribution chamber, etc.) acts as a BPT.

6.5 STORAGE TANK

In most GWSS the yield of the sources is smaller than the peak demand at the taps. Therefore a storage tank serves to store the surplus water during the night for use during the day. Please refer to 7.9.3 Storage Tank. Before constructing a storage tank consider the following points:

- A storage tank should be located as close to the standposts as possible.
- It is more economical to have a long pipeline before the storage tank (without any taps) than to build a long distribution pipeline which is designed for the peak flow.

6.6 DISTRIBUTION CHAMBER

In medium and large GWSS it is necessary to divide the whole area of supply into easily manageable sub-systems of about 10-15 taps each. That means, that the water also has to be distributed accordingly. This can be arranged with the help of a distribution chamber. Please refer to 7.9.2 Distribution Chamber.

6.7 VALVE BOX

The purpose of a valve box is to protect any kind of valves from undesirable tampering by outsiders. Valve boxes can be attached to a particular structure or they can be built separately along the pipeline.

6.8 PIPELINES

Pipes serve to distribute the water from the source to the individual users at a tap. The hydraulic calculations of a system determine the sizes(diameters) of pipes. We recommend the use of PVC pipes because in Sri Lanka the water is often very aggressive towards iron and Gl pipes are therefore not recommended. It might be necessary to protect PVC pipes sometimes with GI pipes (e.g. in areas where pipes can not be buried, to cross small gullies, etc.). Please refer to 7.8 Velocity of Flow in Pipelines and 7.10 Design of Pipeline.

6.9 STANDPOSTS

The following is an abstract from the "Handbook of Gravity-Flow Water Systems" by T.D. Jordan Jr.: The tapstands are the most frequently used component of the entire system. No other structure will face more abuse than these, and no other structure will have to fit in so closely with local, social and cultural needs.

A tapstand is more than just a physical structure. It will become a new and important gathering point of the village. Properly designed and built, the tapstand will be a clean, attractive and inviting place. Poorly completed, it will be a dirty, muddy, unhygienic eyesore.

Please refer to 7.5.2 Situation Survey and to 7.7 Flow at Standposts.

6.10 INSTALLATIONS

6.10.1 AIR VALVES / AIR RELEASE

When a pipeline is filled/refilled air will be trapped in certain areas. As pressure builds up, these air pockets are compressed to smaller volumes. In the process, some of the hydrostatic pressure of the system is absorbed by compressing these air pockets. If too much energy is absorbed, the desired flow will not reach the discharge point. Therefore, at all high points an air release (e.g. air valve, standpipe, open pipe) has to be installed.

6.10.2 WASHOUTS

Suspended particles in the water tend to settle out at low points in the pipeline or where the flow velocity is too small. Therefore at all low points a washout (plug, valve, standpipe) has to be installed.

6.10.3 SECTIONAL VALVES

Sectional valves are installed for two different reasons:

- Parts of the supply system can be shut off for repair purposes
- Flow of water can be rationed in case of a severe drought or other problems which necessitate water rationing.

Sectional valves on long main lines should be located at a distance of 2 to 3 km and it is important to keep in mind that the shut off part of the pipeline can be ventilated (e.g. by air valves or standpost) to avoid the build up of a vacuum.

On distribution lines, sectional valves should be installed so that they control three to five standposts. Whenever possible a sectional valve has to be combined with an air release or washout (sectional valve upstream). The installation of sectional valves in distribution lines makes control valves at individual standposts superfluous. For branch lines, sectional valves should be located at the branch-off.

7 DESIGN GUIDELINES

7.1 GENERAL REMARKS

In this section you will find information on how to design a gravity water supply scheme. The flow diagram on the next page will give you an idea of the design process at a glance. References are given in the diagram to the particular chapters where you can find the issues explained in detail and to the forms to be filled in for certain activities. In exceptional cases, where the provisions of these guidelines will not be sufficient to solve a specific problem, please consult an experienced engineer or refer to the references and bibliography in the Appendix to this manual for further reading.

7.2 SUMMARY OF DESIGN CRITERIA

- Design Period :
- Population Growth Rate :
- Water Demand: 3.75
- Number of People per Standpost : max. 150 (future population)
- Flow of Standposts : $\quad 0.1 \mathrm{I} / \mathrm{s}$ if $0-80$ users per tap
$0.2 \mathrm{l} / \mathrm{s}$ if $80-150$ users per tap
- Roughness of PVC Pipes: $\quad \mathbf{k}=\mathbf{0 . 0 1} \mathbf{m m}$ (used to calculate the friction loss table)
- Maximum Hydrostatic Pressure (PVC Pipes ISO 1000):

100 m in main lines (no taps) 60 m in distribution lines

- Residual Head:
- Flow Velocities :

Maximum $v=3.0 \mathrm{~m} / \mathrm{s}$
Minimum $\quad v=0.5 \mathrm{~m} / \mathrm{s}$

7.3 FLOW CHART OF DESIGN PROCEDURES

Ret. 7.10. fi

Ref. 7.10. 2.2

Ref. 7.11

Ref. 7.11

Ref. Standard Drawings

7.4 PRELIMINARY SURVEY

Once a request for a GWSS is received from a village a first technical survey has to be done. Such a survey is called preliminary survey or feasibility study and should provide enough information to judge whether a GWSS is feasible for the concerned village. Form A (see Appendix) has to be filled in very carefully together with the villagers.
The altitudes of possible sources and of the consumers have to be measured (with a pocket altimeter). Do not forget to draw a sketch of the area.Together with the villagers all possible springs have to be measured. These spring measurements have to be entered into Form B. Insist that a spring is measured at least once a week over a period of one year. Most springs can be measured with spout, bucket and watch. Insist in using always the same bucket and enter its measurements into Form B.

7.5 TOPOGRAPHIC SURVEY

7.5.1 GENERAL REMARKS

The topographic survey can be divided into two parts. First a situation survey has to be done and then a hydraulic survey. The situation survey should allow you to draw a situation plan and the hydraulic survey enables you to calculate and design the whole water system. Instead of explaining all the necessary surveying instruments and the procedures of the surveys in detail we rather recommend an inexperienced surveyor to do one or two surveys together with an experienced surveyor. This on the job training will have a much greater impact and an experienced surveyor can give you many practical hints and prevent you from making annoying mistakes.
After completion of a survey, before you leave the village, be sure that you took all the necessary readings and that you got all the information you need. It is very frustrating to notice too late, that just a few readings are missing.

7.5.2 SITUATION SURVEY

To carry out a situation survey you need a bearing compass and a tape. The data of this survey will be used to draw up the situation plan which should contain the following information:

- Roads, railway tracks, foot paths
- Rivers, streams, lakes, tanks
- Paddy fields, tea land, forests, cliffs, etc.
- Houses and important buildings such as schools, temples, churches,ambalams, hospitals, post offices, community halls, etc. Water sources like springs, wells, etc.

Fill in Form C. While surveying the village it is necessary to maintain a sketch which corresponds with the entries into Form C.
Always try to close a survey. That means to tie the survey into two reference points of known elevations. In rural villages in Sri Lanka it will not be possible to find two points of known elevation. Therefore, each stretch of the survey has to be measured
twice not necessarily along the same route. Each elevation or location can then be calculated by using the average of two readings.
Once all necessary data are collected the situation plan can be drawn up in an appropriate scale:

- 1: 2'500 for small villages
- 1:5'000 for medium villages
- 1:10'000 for large villages

To verify the situation plan, the surveyor should go to the village again and add all missing information. At the same time he can discuss the locations of the standposts with the villagers. It is important that the villagers themselves select the location of stand posts:

- Nearest tap should be within 150 m of any dwelling
- Not more than 150 people (future population) served by one tap
- Separate taps for public institutions (e.g. schools, temples, etc.
- The access to a tap has to be guaranteed to all users (in writing)

7.5.3 HYDRAULIC SURVEY

Once the situation plan is completed the surveyor has to decide upon the layout of the GWSS in close discussions with the villagers. That means they have to discuss the location of:

- Silt box
- Storage tanks
- Break pressure tanks
- Standposts
- Alignment of pipeline etc.

The hydraulic survey is carried out with the help of a clinometer (abney level), bearing compass and a tape. A box altimeter can be used to measure first the elevation of all impc;iant structures of a GWSS. These levels can then be cross checked with the chinmeter readings. A levelling instrument is generally not required. But in cases where the differences in elevation are very small, it might be advisable to check the elevations with a levelling instrument to get more accurate readings.

Take your time with a survey, never do it in a haste.

Try to include as many cross checks as possible. Always reflect on your readings and check quickly whether they can be correct. Try to guess before you take a reading how much it could be. This prevents you from making mistakes with + or signs. A surveyor should make use of as many reference points as possible. It helps you to re-survey a certain part later on. Reference points have to be permanent (e.g. rock outcrops). Mark them with colour (e.g. nail polish). Fill in Form D and make liberal use of the Remarks column.

7.6 FUTURE DESIGN DEMAND

7.6.1 DESIGN PERIOD

Experiences, also in other countries, show that a life span of $15-20$ years for a GWSS can reasonably be expected. We, therefore, assume the design period as 20 Years.

7.6.2 POPULATION GROWTH RATE

According to official statistics the rate of population growth has been as follows:

$1963-1978$	$: 2.8 \%$
$1971-1981$	$: 1.7 \%$
$1981-1990$	$: 1.4 \%$
1990	$: 1.1 \%$ (estimated)

The medium growth rate for time being can be assumed as 1.07%. This figure also coincides with the findings of Cowater international, Inc. in their District Development Plans, Volume 1, Summary, page 1.

7.6.3 POPULATION GROWTH FACTOR

To be able to calculate the future population we have to multiply the present population with the population growth factor for twenty years:

$$
\text { Growth Factor }=\left(1+\frac{\text { Growth Rate }}{100}\right) 20=\left(1+\frac{1.07}{100}\right) 20=\underline{1.24}
$$

7.6.4 WATER DEMAND

Many different surveys of the consumption of water show that the average consumption is 25-70 litres per capita per day. According to the recommendations of WHO we decided upon the following figures:

Rural Village: $45 \mathrm{I} / \boldsymbol{c} \boldsymbol{x} \boldsymbol{d}$ in exceptional cases: $30 \mathrm{I} / \boldsymbol{c} \times \boldsymbol{d}$

Schools : 6 //day and student

Included in above figures is a certain amount of water that is lost for various reasons (leakages, spillage, illegal use, etc.). Such losses depend on various factors (e.g. construction quality, operation and maintenance, pressure in pipes, etc.) and are estimated to be between 20-30 Percent.

7.6.5 AVAILABLE WATER

The yield of all the water sources during the dry season has to cover the future water demand of the population. There will always be some leakage or the spring catchment does not trap all the available water. Overall losses will be about 10%. Therefore the yield in the dry season has to be multiplied with a safety factor of 0.9 to determine the safe yield.

7.6.6 FEASIBILITY OF PROJECT

Form E has to be filled in to see whether a GWSS is feasible or not. The amount of water available has to be bigger than the future design demand. In case it is smaller, the size of the project area has to be reduced or additional sources (even far away) have to be used.
In exceptional cases, it is possible to reduce the daily water demand from $45 \mathrm{I} / \mathrm{c} \times \mathrm{d}$ to $30 \mathrm{l} / \mathrm{c} \times \mathrm{d}$. This decision has to be discussed with the villagers and they will have to take care that as little water as possible is wasted.

7.7 FLOW AT STANDPOSTS

If we want to get the design flow of each standpost we have to divide the future water demand by 86400 seconds (24×3600) and we will get the average flow. This average flow does not represent the actual flow needed at a tap because there will be "peaks" in the consumption of water. The peak flow factor shows the relation between such peak demands and the average demand:
Peak Flow Factor $=\frac{\text { Peak Flow }}{\text { Average Flow }}$

Basically the peak flow factor determines how quickly a water container can be filled. The higher the peak flow factor, the quicker a vessel will be filled. On the other hand, the higher the peak flow factor, the bigger the diameter of the pipes and the bigger the spillage of water. Therefore, a reasonable peak flow factor can be assumed as 3.75. This peak flow factor has to be multiplied with the average flow and you will get the peak flow for each individual tap. This procedure proved to be laborious and the practical experience in the field showed that the accuracy of such a time consuming calculation procedure is not really justified. Therefore, tap flow rates were introduced.

Users per Tap	Tap Flow Rate
$0-80$	$0.10 \mathrm{l} / \mathrm{s}$
$80-150$	$\mathbf{0 . 2 0} \mathrm{l} / \mathrm{s}$

Note: Users per Tap means the future number of users of one tap.
It can be argued that not all taps along the same branch line will be open at the same time and therefore the flow rates for a system could be reduced. However, experiences in the field, not only in Sri Lanka, showed that it is necessary to add up all tap flow rates, without reduction, to get the total flow of a branch line or of a system. Fill in Form \boldsymbol{F} to determine the flow rate at each tap. Additionally you also have to determine from which storage tank the different taps get their water and thus calculate the number of people and/or pupils to be served by a particular storage tank.

With the figures of Form F you can draw the Flowdiagram on Form H. Such a flowdiagram is a simplified situation plan of the whole system. For very large systems it might be necessary to draw flowdiagrams for each branch line separately.
Below you find an example of a simple flowdiagram:

7.8 VELOCITY OF FLOW IN PIPELINES

The velocity of flow in a pipeline has to be considered as well. Too great a velocity can cause excessive erosion of the pipe or increase the risk of the occurrence of water hammers when a valve is closed suddenly. On the other hand, too small a velocity can cause settlements of suspended particles at low points in the pipeline. Therefore, the recommended velocity limits are:

Maximum:	$v=3.0 \mathrm{~m} / \mathrm{s}$
Minimum:	$v=0.5 \mathrm{~m} / \mathrm{s}$

The table below gives the corresponding minimum and maximum flows ($/ / \mathrm{s}$) for various PVC pipe sizes (nominal sizes in mm):

	20	25	32	40	50	63	75	90
Max. $\mathrm{Q}=$.76	1.14	1.85	2.89	4.56	7.13	9.95	14.71
Min. $\mathrm{Q}=$.13	.19	.31	.48	.76	1.19	1.66	2.45

7.9 CALCULATION OF THE SIZE OF STRUCTURES

7.9.1 SEDIMENTATION CHAMBER / SILT BOX

As mentioned in chapter 6.3 Sedimentation Chamber/Silt box the detention time in a silt box is $\mathbf{2 0}$ minutes. During this time most of the suspended particles can sink down and settle on the bottom of the silt box.
The capacity of a silt box can be calculated with the following formula:

$$
\begin{array}{ll}
\mathrm{C} \geq \mathrm{Q} \times \mathrm{T} \\
& \text { where: } \\
& \begin{array}{l}
\mathrm{C}=\text { Capacity in litres } \\
\mathrm{Q}=\text { Total maximum yield } \\
\\
\end{array} \\
& \\
& \\
& (20 \text { minutes }=1200 \text { seconds })
\end{array}
$$

The flow used to calculate the capacity of the silt box is the total maximum yield of the spring(s).
Please refer to the Appendix to this manual for the standard drawings of sedimentation chambers/siltboxes.

7.9.2 DISTRIBUTION CHAMBER

In case a GWSS needs more than one storage tank it is necessary somehow to distribute the available water coming from the catchment(s) through the supply line in a distribution chamber located before the storage tanks. There are several designs of distribution chambers. An easy and inexpensive way is the construction of a chamber with a baffle plate. The plate is dividing the chamber into two sections, one for the inlet from the catchment(s) and one for the outlets to the storage tanks. The water in the first chamber is flowing under the baffle plate into the second chamber where it flows through the open ends of PVC elbows fixed to the outlet pipes. The PVC elbows should all be on the same level and in size direct proportional to the distribution ratio. If necessary, orifices can be used for fine adjustments.
After fixing the elbows and orifices, the actual flow of water into the storage tanks should be measured and fine adjustments be made at the orifices till the actual and the desired distribution ratios are equal.

Please refer to the standard drawing for distribution chambers in the Appendix to this manual for more details.

7.9.3 STORAGE TANK

As explained in chapter 6.5 Storage Tanks the demand during peak times is very often bigger than the yield of the source. A storage tank serves to store water during periods of low demand for use during periods of high demand. Below you can see a typical demand pattern of a rural village in Sri Lanka:

Time Period	Hours	\% of Daily Demand
$05.30-08.30$	3.0	30%
$08.30-11.30$	3.0	10%
$11.30-13.30$	2.0	15%
$13.30-16.00$	2.5	10%
$16.00-19.00$	3.0	30%
$19.00-05.30$	10.50	5%

The location of a storage tank has to be considered very carefully. They should be located as far down the system as possible. A few small storage tanks are usually preferable to one large tank. To determine the size of a storage tank, the supply has to be compared with the daily demand. Such a comparison shows the deficit in supply during the day time. The storage capacity has to cover at least this deficit. Use Form \boldsymbol{H} to calculate the minimum volume of a storage tank. Compare the calculated minimum volume with the volume of the standardized storage tanks in the Appendix to this manual and select the appropriate storage tank design!

7.9.4 BREAK PRESSURE TANK (BPT)

As explained in chapter 6.4 Break Pressure Tank a BPT reduces the static pressure to zero and establishes a new static level. In chapter 7.10.2.1 Static Pressure Head the maximum static pressure heads are given:

- Main Line : $\quad 100 \mathrm{~m} \quad$ Under the condition that PVC pipes ISO 1000 are used!
60 m

Sometimes it is necessary to install a ball valve (float valve) at the inlet to the BPT (e.g. when there are standposts joined directly to the main line). However, it is always preferable not to have standposts on a main line. Please refer to the Appendix to this manual for the standard design drawings of BPTs.

7.10 DESIGN OF PIPELINE

7.10.1 TYPES OF PIPELINE

We can distinguish between three types of pipelines:

- Source Line: They deliver the water from the catchment to the silt box/collection chamber. Each source should have its own pipeline. The minimum slope required is 2%. The diameter depends on the maximum yield of the spring, but should not be smaller than 50 mm (outside diameter). It is advisable to install a second source line a little bit higher than the first one, so that the caretaker can easily detect when the first line gets blocked.
Main Line (without any taps): They link the different tanks, boxes and chambers with each other, but do not distribute water to the taps.Therefore, they can be designed for a continuous 24 hours average flow.
- Distribution Lines: They transport the water to the different standposts. They have to be designed for the peak flow.

7.10.2 PRESSURE HEAD IN PIPES

7.10.2.1 Static Pressure Head

As explained in chapter 5.4 Fluid Statics the static pressure head is equal to the vertical distance between a particular point in the pipeline and the surface of the water at the open end of the pipeline, e.g. storage tank, BPT, etc. In distribution lines there is a continuous change of flow caused by the opening and closing of taps. These changes of flow rate can create pressure waves, and if there is an abrupt change of flow, e.g. a sudden closure of a tap or valve, a water hammer can develop. Therefore there are different max. pressure heads for main lines and distribution lines:

under the condition that PVC pipes ISO 1000 are used.

7.10.2.2 Residual Head (Dynamic Pressure Head)

Residual Head is the amount of energy remaining in a pipeline when the desired flow has reached the standpost. A designer of a GWSS has to fully understand the significance of residual head at standposts, storage tanks and break pressure tanks. The following examples should help to get this understanding.

Natural Flow: The natural flow of a pipeline is the absolute maximum flow that can be moved through a particular pipeline by gravity; the residual head will be zero.

Example:

What is the natural flow through the
 pipe-line shown in the sketch on the left when:

```
H=50m
L}=475\textrm{m
PVC pipe ø 32 mm
```

Solution: Friction loss factor $=\frac{50}{475}=0.1053=10.53 \%$
Friction loss table : for friction loss factor $=10.53 \%$ and pipe diameter $=32 \mathrm{~mm}$ $-Q=0.96 \mathrm{l} / \mathrm{s}$

Static Level

Positive Residual Head:

There is an excess of gravitational energy; there is enough energy to move an even greater flow through the pipeline. If the flow is allowed to discharge freely, it will increase, thus increasing also the frictional head loss until there will be natural flow.

Negative Residual Head:

There is not enough gravitational energy to move the desired quantity of water. Therefore, the desired quantity will not flow. The HGL has to be re-plotted using a smaller flow and/or a larger pipe size.

Limits of Residual Head:

Sometimes, while plotting the HGL you discover that, due to the topography, the HGL will go "underground". See drawing. The pressure in the area where the HGL is "underground" is a negative pressure and there is a risk of sucking polluted liquids into the pipeline via leaky joints. Such a design is unacceptable!

The HGL should generally be not less than 10 m above ground level; but never fall less than $5 \mathbf{m}$ above the ground!

By changing the size of the pipe you can keep the HGL minimally 10 m above the ground.

On the other hand, too big a residual head at standposts increases wear and tear on valves and tends to increase water spillage. Therefore, the following residual heads are recommended.

- Standposts:	ideal acceptable	5 to 10 m 10 to 15 m
- BPT and storage tanks:		10 to 20 m

Above figures include a certain safety against inaccuracies of the topographic survey.
There may be standposts where the residual head is excessively high. In such a case it is necessary to install a device which causes a high frictional loss in a short length of pipeline. Such a device is called orifice and a possible design is shown in the drawing below:

Do $=$ diameter of orifice
$N D=$ nominal diameter of pipe
$\mathrm{Di}=$ inner diameter of pipe

The headloss through an orifice depends on the pipe diameter, the size of the orifice and the flow in the pipe. The general formula looks like this:

$$
\begin{array}{ll}
\mathrm{Q}=\mathrm{C} \times \mathrm{A} \times \sqrt{2 \times \mathrm{g} \times H} \text { where: } \quad \begin{array}{l}
\mathrm{Q}=\text { Flow } \\
\mathrm{C}=\text { Coefficient of orifice } \\
\\
\mathrm{A}=\text { cross-sectional area of orifice } \\
\mathrm{g}=\text { Gravitational acceleration }= \\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}=\text { Headloss through orifice }
\end{array}
$$

The coefficient of orifice for the above shown type is approximately 0.6 .

$$
H=\frac{Q^{2}}{C^{2} \times A^{2} \times 2 \times g}=\frac{Q^{2}}{A^{2} \times 0.6^{2} \times 2 \times 9.81}=\frac{Q^{2}}{A^{2} \times 7.06}
$$

Headloss through Orifice:

Orifice diameter $[\mathrm{mm}]$	Headloss [m]	
2.5	58.8	Flow $=0.2 \mathrm{l} / \mathrm{s}$
3.0	28.3	235.0
3.5	15.3	113.3
4.0	9.0	61.2
4.5	5.6	35.9
5.0	3.7	22.4
5.5	2.5	14.7
6.0	1.8	10.0

7.10.3 HINTS ON PIPELINE DESIGN

Below you find some drawings with correct/wrong pipeline designs:

correct:

wrong:

7.10.4 PIPE COMBINATIONS

When designing a pipeline, it is sometimes impossible to select one pipe size which gives the desired frictional headloss. In such cases, a combination of pipe sizes is used.

$\mathrm{L}=$ total pipelength
$\mathrm{X}=$ small-size pipelength
$\mathrm{L}-\mathrm{X}=$ large-size pipelength
$\mathrm{H}=$ Total desired headloss
$\mathrm{FS}=$ Friction factor of small pipe in \%
$F L=$ Friction factor of large pipe in \%
$\mathrm{HS}=$ Headioss of small pipe
$\mathrm{HL}=$ Headloss of large pipe

$$
\begin{array}{ll}
H=H_{S}+H_{L}, H_{S}=F_{S} \times \frac{X}{100} & H_{L}=F_{L} \times \frac{L-X}{100} \\
H=F_{S} \times \frac{X}{100}+F_{L} \times \frac{L-X}{100} & \rightarrow
\end{array}
$$

7.10.5 JOINING OF PIPELINES

In case two pipes have to be joined at a common point the residual heads of both pipes have to be equal. Otherwise the pressure from one pipe will interfere with the flow from the second pipe.
It is easiest to design one pipeline to the junction. Then the sizes of the other pipe can be determined according to chapter 7.10.4 Pipe Combinations. From the junction onwards you can continue with the total flow of both pipes.

-37-

7.11 DRAWINGS

As mentioned in the various preceding chapters some drawings are required to:

- Visualize the design of a GWSS.
- Enable an outsider to understand the design and to construct the GWSS accordingly.
- Help the designer in the designing process.
- Make checking of the design much easier.
- Show the design to any interested person.

Besides the various forms to be filled in, the following drawings should be compiled:
Situation Plan: - Roads, railway tracks, footpaths
(completed) - Rivers, streams, lakes, tanks

- Paddy fields, tealand, forests, cliffs, etc.
- Houses and buildings
- Water sources like springs, wells, etc.
- Pipe alignments (type, length and size can be shown in a separate pipe schedule)
- Structures like silt box, distribution chamber, storage tanks, BPTs, standposts, valve chambers,sectional valves, air releases, wash outs, etc.
- Volume and elevation of above structures

Use the symbols shown in Form L to draw the situation plan. An example of a header for a situation plan is given in Form \boldsymbol{M} and an example of a pipe schedule is included in the same Form M.
An example of a situation plan can be seen in chapter 8 Design Example.

- Flow Diagram : has to be drawn on Form H
- Hydraulic Profile : has to be drawn on Form J
- Recommended Scales: - Horizontal: $1: 2^{\prime} 000,1: 5^{\prime} 000,1: 10^{\prime} 000$
- Vertical: 1: 200, 1: 500, 1: 1'000

All the above drawings should be kept together with all calculations and forms in one project file.

8 DESIGN EXAMPLE

8.1 GENERAL. REMARKS

On the following pages you will find a detailed example of a design of a GWSS. We assume that the preliminary and topographic surveys have been completed. This means that the location of the structures has been decided upon and we can now start with the calculation of the volumes of the structures and the pipeline design. Please refer to the enclosed situation plan of GWSS (see following page) to get an overview of the project.
The calculations in this example will follow the procedures given in the flow chart and the explanations given in chapter 7 Design Guidelines.

8.2 FEASIBILITY OF PROJECT

Form E has to be filled in. As the normal design period is 20 years, the growth factor is $\mathbf{1 . 2 4}$. The demand is $45 \mathrm{l} / \mathrm{d}$ per inhabitant and $6 \mathrm{l} / \mathrm{d}$ per student.

The project is feasible!

8.3 FLOW RATE AT STANDPOSTS / TAPS

Form F has to be filled in.
The taps have to be assigned to the storage tank from where they get their water and then the number of beneficiaries served by a particular tap can be added up.

Flow at Standposts / Taps:

Explanations:
(1) : Future users (present population x growth factor)
(1) : Future users (present population \times growth actor)
(2): Mark from which storage tank the tap gets water and add up Mark rom which storage tank the lap gets water and add up
the number of people or pupils per storage tank.
(3) : Flow rate according to the number of users (0.1 or $0.2 \mathrm{l} / \mathrm{s}$)
(4) ; Give specific details e.p. tap for school, temple elc.

With above flow rates, the flowdiagram on Form \boldsymbol{H} has to be drawn:

కెఆితిఠతి ఱషఁ飞ీఠ SITUATION PLAN

	K－1	EOM Date：	19．06．91		Bna Date：	$\begin{gathered} 5 y \\ \text { By: } \end{gathered}$
0 ：le：	1：2000	～RO ひーム Drawn by：	Ashoka	ジいいがい Amendments		
o Sheet：	Kandy	Surveved by：	Saman			

－Cratem mocu
Sedimentation Chamber
c $\omega=190$
$h=190$
（ぱ 1 Spring
$\mathrm{c}=190.5 \mathrm{~h}=190.5$
（vor
Spring 2
$\mathrm{C}^{2}=190.4$
？が mormosi
To Ihala Gonagama

8.4 SEDIMENTATION CHAMBER / DISTRIBUTION RATIO

Form \boldsymbol{G} has to be filled in.

Volume of Sedimentation Chamber / Silt Box:

Fbow (total maxit	orm E):		$0=$	0.89......
Retention Time:			T =	$1200 \mathrm{~g}$
Capacity:	$\mathrm{C}=\mathrm{O} \times \mathrm{T}=$	$0 \cdot 89$	x $1^{\prime 2} 200=$	1.868

Select the correct sedimentation chamber / sill box from the standard drawing in the manual Construction and Slandardisation of Gravily Water Supply Schames in Rural Villages in Srl Lanka.

Selected: Silt box with valve chamber (type A), volume $=1$ '000 I, standard drawing no. S-03

The available water has to be distributed between storage tank 1 and storage tank 2 in the ratio of one to three.

Water Demand per Storage Tank and Distribution Ratlo:

Stor.	No. of Beneticaries				Demand per			
No.	People (1)	vd (2)	Pupils (3)	$\begin{aligned} & \text { Vd } \\ & \text { (4) } \end{aligned}$	$\begin{aligned} & \text { Day } \\ & \text { (5) } \end{aligned}$	Second (6)	Factor (7)	Storage Tank (8)
1	183	45	6	6	81235	0.0953	1	0.1058
2	531	45	130	6	24.675	0.2856	3	0.3173
3	\checkmark	1	/	6	\checkmark	\checkmark	/	/
Explanations:								
(1) : No. of people				(5) $=$ (1) $\times(2)+$ (3) $\times(4)$				
(2) : 45 ldd (30 ld)				(6) $=$ (5) / $866^{\prime} 400$				
(3) : No. ot pupils				(7) : Distribution factor in comparison with				
(4) 6 \% d				the other storage lanks (8) - Total sate yield distr. according to (7)				

8.5 DISTRIBUTION CHAMBER

As there are two storage tanks, the available water has to be split between these two storage tanks. Therefore, a distribution chamber has to be constructed, preferably very close to storage tank 1.

Selected: Distribution chamber, ratio 1:3, standard drawing no. C - 04.

8．6 STORAGE TANKS

Form H has to be filled in．
Volume of storage tank 1 ：
$\mathrm{V} \geq 2.7 \mathrm{~m}^{3}$

Volume of storage tank 2：
$V \geq 8.0 \mathrm{~m}^{3}$

Period	$\begin{array}{c\|c} \hline \text { Inlat } \\ \text { O Vs } \\ \text { Seconds } & \text { (1) lit. } \\ \hline \end{array}$		\％	utlet v （2）lit．	Differance +1 － （3）	Water Level in litres （4）
05．30－08．30	10800	1\％4．3	30		－1要会禺	－个緻最
08．30－11．30	10800	．1．\times＋3．，	10	－823		－
11．30－13．30	7200	．．．762	15	235	\cdots－ 4.78	－ 1480
$13.30 \cdot 16.00$	9000	．1．982	10	823	＋ 129	－1352
16．00－19．00	10＇800	1.143	30	2471	－1828	－76880．．．
19．00－05．30	377800	3．999．．．		．－． 412.	＋3＇587．．	\pm＋ 9 ¢7
Daily Inlet.$- .9^{\prime} 141$			E225．－Daily Denand			Overflow
Tark is filled withith ．．．．．．． lo ．．．．．．．．hpurs（must be less than 10 hours）						

Explanations：
（1）$=0 \times$ seconds
（2）$=\mathrm{Dx} \%$
（3）- （1）－（2）
（4）- sum of（3）
inlet Q ：Flow of inlet
Water Level：Indicale whether＋or
Min．Storage Capaclty $=$ smallest（4），（negative）
Tank chosen ；Refer to Standard Drawings

Flow Dlagram（hand sketeh）：

Volume of Storage Tank

Explanations：
（1）$=0 \times$ seconds
（2）$=\mathrm{D} \times \%$
（3）$=$（1）（2）
（4）$-5 u m$ of（3）
Flow Dlagram（hand sketch）

Inet Q：Flow of intet
Water Level：Indicate whether＋o
Min．Storage Capacity $\boldsymbol{-}$ smallest（4），（hegative） Tank chosen ：Reter to Slandard Drawlngs

Selected：Storage tank 1 ：$V=3 \mathrm{~m}^{3}$ ，standard drawing no． \boldsymbol{T}－05／06
Storage tank 2 ：$V=8 \mathrm{~m}^{3}$ ，standard drawing no．T－O5／06

8．7 BREAK PRESSURE TANK

When we compare the elevation of the structures with each other we see that the biggest difference is between storage tank $2(\mathrm{~h}=106 \mathrm{~m})$ and tap $14(\mathrm{~h}=26 \mathrm{~m})$ ．This difference in elevation is 80 m which is more than 60 m （max．static pressure head in distribution lines）．Therefore a BPT has to be constructed between tap 13 and tap 14．As there are taps joined to the pipeline，it is necessary to install a BPT with a ball／float valve．All other differences in elevation lie within the possible limit of 100 m static head on main lines and 60 m static head on distribution lines．

Selected：BPT type B with ball valve，standard drawing no．C－03．

8.8 HYDRAULIC CALCULATION OF PIPELINES

The following calculations can be done with the help of Form \boldsymbol{H}.

8.8.1 SOURCE LINES

Source 1-Sedimentation Chamber:

Given: \quad Max. yield $=0.49 \mathrm{I} / \mathrm{s}$
Min. yield $=0.25 \mathrm{l} / \mathrm{s}$
$\mathrm{L}=11 \mathrm{~m}$ (Distance from spring to silt box)
$h=0.50 \mathrm{~m}$ (Difference in height between spring outlet and silt box inlet)
Q req. $=0.25 \mathrm{l} / \mathrm{s}$ (safe yield)
Required: σ of source line and σ of overflow pipe
Solution:

$$
\text { Headloss }=\frac{0.50}{11.00}=0.0455=4.6 \%
$$

Friction loss table: $\mathrm{J}=4.6 \%$

$$
\mathrm{Q}=0.49 \mathrm{l} / \mathrm{s}
$$

Min. \varnothing for source lines is 50 mm (chapter 7.10.1. Types of Pipelines)

Selected: Source line : o 50 mm , two pipes to be installed Overflow : 50 mm

Source 2-Sedimentation Chamber:

Given: Max. yield $\quad=0.40 \mathrm{l} / \mathrm{s}$
Min. yield $\quad=0.17 \mathrm{l} / \mathrm{s}$
$\mathrm{L} \quad=19.00 \mathrm{~m}$
$\mathrm{h}=0.40 \mathrm{~m}$
Q req. $=0.17 \mathrm{l} / \mathrm{s}$
Required: \varnothing of source line and overflow pipe
Solution:
0.40

Headloss $=\frac{}{19.00}=0.021=2.1 \%$

Friction loss table: $\mathrm{J}=2.1 \%$
$\rightarrow ø \geq 32 \mathrm{~mm}$

$$
\mathrm{Q}=0.4 \mathrm{l} / \mathrm{s}
$$

Selected: Source line: $\boldsymbol{\sigma} \mathbf{5 0} \mathbf{~ m m}$, two pipes to be installed

Overflow: $\quad 50 \mathrm{~mm}$

8.8.2 MAIN LINES

Sedimentation Chamber - Distribution Chamber

HYDRAULIC CALCULATION

Selected: \quad pipe $\varnothing=20 \mathrm{~mm}$, length $=153 \mathrm{~m}$
pipe $\varnothing=25 \mathrm{~mm}$, length $=255 \mathrm{~m}$
Distribution Chamber - Storage Tank 1

Selected: \quad pipe $ø=50 \mathrm{~mm}$

Distribution Chamber - Storage Tank 2

Selected: \quad pipe $\varnothing=32 \mathrm{~mm}$, length $=144 \mathrm{~m}$ pipe $\varnothing=40 \mathrm{~mm}$, length $=353 \mathrm{~m}$

8.8.3 DISTRIBUTION LINES

Storage Tank 1 - Tap 1

$\begin{aligned} & \text { Sta- } \\ & \text { tion } / \\ & \text { Tap } \end{aligned}$	$\begin{aligned} & \text { Elevar } \\ & \text { tion } \\ & \text { (m) } \end{aligned}$	Static Head (m)	$\begin{aligned} & \text { Dist- } \\ & \text { antce } \\ & \text { (m) } \end{aligned}$	$\begin{aligned} & \text { Flow } \\ & (1 / s) \end{aligned}$	Desired Fesidual Hada (m)	Desired Headioss (m)/Factor	$\begin{aligned} & \text { Pipe } \\ & (\mathrm{mm}) \end{aligned}$	Attual Headloss Factor (\%)	Friction Lots (m)	Friction Ehainage (m)	Dynamic Head (m)	Femarks
storaye 1	1.24.00	0.00	51	0.10	4.75	0.25/0.5\%	10	1.5%	/	7	1	
Tap 1	19.00	5.00							0.77	$0 \cdot 77$	$4 \cdot 24$	ok.

Selected: pipe ø 20 mm

Storage Tank 1 - Pt. A - Tap 2 - Tap 3 - Tap 4

Starcan	124.00	0.00	60	0.30	8.50	0.50/0.0\%	40	0.46%	$/$	1	$/$	--3-]
Pt. A	115.00	9.00	$2{ }^{\circ}$	0.10	9.00	1.00/3.6\%	20	1.5\%	0.26	0.28	8.72	OK
Tap 2	114-00	10.00	20		9.00	1.00/3.6\%	20	1.5\%	0.42	0.70	9.30	OK.
Pt. A	115.00	9.00	105	0.0	10.00	4-00/3.9/4	30	1.5\%	0.28	0.28	8.72	accept.
Top 3	11000	14.00	105				20		1.58	1.86	12.14	
Pf. A	15.00	9.00	126	0.10	10.00	$400 / 40 \%$	20	1.5\%	0.28	0.28	$8 \cdot 72$	accept.
Tap+	108.00	16.00	120				20		1.89	2.17	13.85	

Selected: Storage Tank 1

- Pt. A : pipe $\varnothing 40 \mathrm{~mm}$

Pt. A

- Tap 2 : pipe ø 20 mm

Pt. A

- Tap 3 : pipe ø 20 mm

Pt. A

- Tap 4 : pipe ø 20 mm

Storage Tank 2 - Tap 5

$\begin{aligned} & \text { Sta- } \\ & \text { tion, } \\ & \text { Tap } \end{aligned}$	Elevation (m)	Static Head (m)	Distance (m)	Flow (1/s)	Desired Pesidual Head (m)	Desired Headiong (m)/Factor	Pipe 9 (mm)	Actual Hedalots Factor (\%)	Friction Loss (m)	Friction Chainage (m)	Dynamic Head (m)	Remanks
Stowager	106.00	0.00	60	$0 \cdot \%$	3.00	0.0010.6\%	25	0.6\%	/	/	/	
Taps	103.00	3.00							0.36	0.36	2.64	accept

Selected: pipe ø 25 mm

Storage Tank 2-Pt. B - Tap 6 - Tap 7-Tap 8

Selected: Storage Tank 2
Pt. B
Pt. B Pt. B

- Pt. B: pipe $\boldsymbol{\sigma} \mathbf{4 0 \mathrm { mm }}$
- Tap 6 : pipe ø $\mathbf{2 0} \mathbf{~ m m}$
- Tap 7 : pipe ø 20 mm
- Tap 8 : pipe $\boldsymbol{\sigma} \mathbf{2 0} \mathbf{~ m m}$, with orifice! orifice $\varnothing 3.00 \mathrm{~mm}$

Storage Tank 2－Tap 9

ぱロフワか	B80	ど○	E1：0	790	9% ．	O－	／	क） 0	oで	00．1	$100 \cdot 901$	6 －1
		＜								00.0	00．901	和b，
	$\begin{gathered} (\omega) \\ \text { pren } \\ \text { गweuko } \end{gathered}$		$\begin{gathered} \{(\omega) \\ \text { sson } \\ \text { wequ\|f } \end{gathered}$	（\％） 10108 ธ50ןpe쿠 panioy	（шш） －adid	10108． 1 （ $\mathbf{(w)}$ ．650입․․․ pelition	（ш）реен ［enpisey pell 38	（5／1）		（ ${ }^{(\omega)}$ ${ }^{\mathrm{pBe}} \mathrm{H}$ 9ulens		

Selected：pipe ø 25 mm

Storage Tank 2－Tap 10 －Tap 11

Storagr 2	106.00	0.00	107	0.40	5.00	4．00／3．7\％	32	2.3%	\checkmark	\checkmark	\bigcirc	
Tap io	97.00	9.00	131	0.20	10	42125\％	20	5．3\％	2.46	2.46	6.54	or
Tap II．	61.00	45.00	an	onfice	Las	32103	20		6.94	9.40	35.60	toobig
			an		hast		Orifice	$t=4.5$	22.4	31.80	13.20	accept

Selected：Storage Tank 2 －Tap 10
Tap 10 －Tap 11
pipe $\quad 32 \mathrm{~mm}$
pipe ø 20 mm ，with orifice！ orifice $\varnothing 4.5 \mathrm{~mm}$

Storage Tank 2 －Tap 12 －BPT－Tap 13 －Tap 14

Selected：Storage Tank 2
Tap 12 Tap 13 BPT

Tap 12
Tap 13
BPT
Tap 14
pipe $\boldsymbol{\sigma} \mathbf{2 0 \mathrm { mm }}$
pipe $\varnothing \mathbf{2 0} \mathbf{~ m m}$
pipe $\boldsymbol{\sigma} 20 \mathrm{~mm}$
pipe ø 20 mm ，with orifice！ orifice $\varnothing 3.5 \mathrm{~mm}$

8．9 DRAWINGS

Below you will find the two drawings which have to be prepared for each GWSS：
－Situation Plan
－Hydraulic Profile

తఆితిఠతి ఱエ飞飞ేఠ SITUATION PLAN

$$
60 \times 45 \mathrm{~cm}
$$

 i No．	K－1	छnoc： Date：	19．06．91		दrocs Date：	$\begin{gathered} \text { ठెबx> } \\ \text { By: } \end{gathered}$
 le：	1：2000	Drawn by：	Ashoka	E＂（Gcafex Amendments		
se ఆroc： ，Sheet：	Kandy	 Surveved by：	Saman			

ถั FROM	\＆\＄D TO	$\varepsilon \sigma$ DISTANCE	5\％moenc DIAMETER	$\begin{gathered} \text { ED } \\ \text { FROM } \end{gathered}$		$\begin{aligned} & \text { \&abe } \\ & \text { TO } \end{aligned}$	s DISTANCE	రెamoenc DIAMETER
S．B．	D．C．	$153 / 255$	20／25	РTB	－－	T 7	46	20
D．C．－	ST 1	10		PTB	－	T 8	330	20
D．C．－	ST 2	144／353	32／40	ST 2	－	T 5	60	25
Sr 1	T 1	51	20	ST 2	－	T9	20	25
ST 1 －	PTA	60	40	ST 2	－	T 10	107	32
PTA -	T2	28	20	T 10	－	T 11	131	20
PTA	T 3	105	20	ST 2	－	T 12	127	20
PTA－	T 4	126	20	T 12	－	T 13	86	20
ST 2 －	PT B	174	40	T 13	－	BPT	10	20
PT B	T6	47	20	BPT	－	T 14	94	20
PTB－	T 7	46	20	ST 2	\cdots	T 10	107	32

－Cortem acioco
Sedimentation Chamber
$c^{*}=190$
$h=190$

HYDRAULIC PROFILE

HYDRAULIC PROFILE

HYDRAULIC PROFILE

HYDRAULIC PROFILE

PART II

1 INTRODUCTION

This second part of the manual Design, Construction and Standardisation of Gravity Water Supply Systems in Rural Villages in Sri Lanka is closely related to Part I which covers most aspects concerned with the design of a GWSS, whereas this part gives some practical hints and information about the construction of a GWSS. Additionally, forms and standard drawings of all relevant structures are included in the Appendix to this manual.
It is beyond the scope of this manual to give a detailed introduction into the topics of building construction, concrete and masonry technology, site supervision, etc., nor is it intended to be a handbook for masons. As mentioned above, we concentrate on practical hints for the construction of a GWSS. Therefore, a site supervisor of a gravity water supply system should have some experience in construction works. All basic knowledge of how to prepare concrete, how to build masonry walls, etc. should be available with the site supervisor.

2 SPRING CATCHMENT

2.1 GENERAL REMARKS

The spring catchment is the heart of a water supply system and not accessible any more after its construction. Therefore, the design and construction of a catchment have to be done very carefully. Due to the uniqueness of each source, there cannot be a standard design of a catchment that is applicable for every system. However, there are some standard design features which can be applied to all catchments.
The natural flow of a spring must never be changed! In the immediate vicinity of a catchment there should be no trees whose roots could damage the catchment.

2.2 TYPES OF SPRINGS

There are several types of springs and they can be classified with the help of different methods (e.g. geological, hydrological, etc.). For the construction of a catchment it is important to distinguish between two types of springs:

- Gravity springs: The spring water is moved by the force of gravity along an impermeable layer and emerges more or less horizontally from the ground.
- Artesian spring: The spring water is trapped between impervious layers and is forced to the surface by hydrostatic pressure. The water emerges more or less vertically from the ground.

We will concentrate in this manual on the common type of gravity springs and only briefly touch artesian springs in chapter 2.5. Artesian Springs.

2.3 PROTECTION ZONE

It is obvious, that the catchment area has to be protected to prevent a spring from becoming polluted. Especially the area just above and upstream of the catchment needs extreme care. The size of the protection zone depends on the thickness and nature of the covering stratum. In any case, the radius of the protected area must not be smaller than 10 m . Within this area no farming, no domestic animal grazing, no rubbish pits, etc. are allowed. The area just above the catchment should be planted with grass and outside of a radius of about 10 m the protection zone should be afforested. It is advisable to insist that the protection zone is fenced and protected just after the completion of the catchment and before any other works are started.

2.4 CONSTRUCTION OF CATCHMENT FOR A GRAVITY SPRING

The construction of a spring catchment can be divided into the following phases:

- Excavation
- Construction of catchment
- Construction of collection / sedimentation chamber
- Laying of source lines
- Backfilling of catchment with filter package
- Refilling of earth cover and completion of protection zone

2.4.1 EXCAVATION

The excavation of a catchment should be done during the dry season when the yield of a spring is lowest. However, the catchment has to be designed to trap the peak flow during the rainy season.
The digging is started at the point where the water emerges from the ground. From here, the excavation has to follow the flow of water back into the ground/hill until the earth cover of the source is at least 3 m . Be sure to allow a free flow of the water at all times so that the source does not get blocked. Excavate along the impermeable layer but take care not to cut through this layer. In case it is not possible to dig as deep as the impermeable layer (see sketch below) You have to consider the spring as an artesian one and the catchment has to be built accordingly. Please refer to chapter 2.5. Artesian Springs.

The trench walls have to be sloped to ensure their stability. In rare cases it might even be necessary to use shuttering to guarantee that the trench walls do not collapse.
In many cases the flow of spring water appearing at the head of the excavation of a trench decreases with the advancing excavation. This means that water is flowing into the trench not only at the head of the excavation but also from the sides of the trench. In such a case the trench has to be split to form a T or V as soon as the earth cover is big enough(3 m). See sketch below:

2.4.2 DESIGN AND CONSTRUCTION OF CATCHMENT

Once the excavation is completed the nature of the spring is much more visible than before and the design of the catchment can be made accordingly.
A catchment consists of the following main parts:

> Barrage / Dam: Directs the water into the supply system.
> Permeable Structure / Drain: Acts as a shuttering for the water bearing layer and prevents it from being washed out. It also drains the water into the supply system.
> Cover of Catchment: Prevents the infiltration of surface water into the catchment.

2.4.2.1 Barrage (Dam)

The barrage (dam) is built on the opposite side of the place where the spring water enters into the catchment. The barrage directs the water into the source line which delivers the water to the collection chamber/siltbox.
First, a temporary dam (made out of clay and a temporary pipe) has to be built to divert the water from the place where you want to build the barrage. The foundation of the barrage should be located $20-30 \mathrm{~cm}$ inside the impermeable layer and should extend into the side walls to prevent the water from flowing around the barrage. The concrete for the foundation is cast directly against the ground. The barrage is built on top of the foundation either in concrete or in stone masonry. A mortar layer on the exposed, inside wall makes the barrage watertight. The top of the dam should not be higher than the top of the water bearing layer. The pipe for the source line is placed at the lowest possible location with a minimum slope of 2% and a minimum ø of 50 $\mathbf{m m}$. It is advisable to install a second source line (or at least an overflow pipe) a little ($=5 \mathrm{~cm}$) higher than the first pipeline, so that the caretaker can easily detect when the first line gets blocked. It is important to install the second pipe to prevent the spring from getting blocked in case the first pipe gets clogged. If the spring is blocked, the spring might disappear completely because the water could find another way.

2.4.2.2 Permeable Structure / Drain

The permeable structure/drain collects the spring water and guides it into the supply system. Moreover, the filter package around the drain acts as a shuttering for the water bearing layer and it prevents it from being washed out.
The drain can be made out of dry stone masonry or a perforated pipe. The crosssection has to be big enough to allow the drainage of the maximum yield of the spring. Again, the natural spring flow must not be obstructed! The slope of the drain should be 1-2 \%.
Above and behind the drain, a filter package has to be constructed. Washed stones/gravel have to be used. The size of the stones/gravel immediately around the drain depend on the size of the opening in the dry stone masonry or the size of the perforation of the pipe. Obviously the size of the stones/gravel can be reduced continuously as you build the filter package away from the drain. The filter package should be built as high as the barrage and it should slope towards the barrage with a gradient of min. 5\%.

The top of the filter package will serve as formwork for the concrete cover of the catchment. Never walk on the filter package to prevent any contamination of the catchment.

2.4.2.3 Cover of Catchment / Inspection Chamber

Surface water which seeps through the refilled earth cover on top of the catchment has to be prevented from entering into the catchment. This can be achieved by constructing a concrete cover with a thickness of min. $\mathbf{5 c m}$. The cover is constructed on top of the filter package and together with the barrage it should cover the whole catchment and even extend (for about 20 cm) into the side walls. It should slope (min. 5%) towards the barrage to ensure proper drainage. There should also be a cross-fall in the cover, so that the surface water can be guided into the seepage water drain pipe. Use rather dry concrete (earth dry), at least for the first layer, so that the cover prevents the pores in the filter package from getting clogged by concrete slurry. The concrete has to be compacted well and its surface has to be floated to make it smooth enough to drain the percolated surface water.

An inspection chamber can be constructed above the outlet of the catchment.This would allow later access for inspection of the catchment (e.g. if outlet is blocked) without breaking the cover. Important: If such an inspection chamber is constructed, the opening must be sealed watertight to avoid any seepage of surface water through the cover into the catchment!

2.4.2.4 Earth Cover of Catchment

Once the concrete cover is completed and has set, the whole catchment has to be covered with earth again so that it looks as it did before the excavation was started. Use the excavated material for refilling and backfill in layers of $20-30 \mathrm{~cm}$ and compact each layer very well. Once the backfilling is completed the surface has to be planted with grass to protect it from erosion. Do not plant trees within a radius of 10 m of the catchment as the roots of such trees could damage the catchment structure. About 20 m above the catchment a trench has to be built to divert the surface water. The length of such a trench depends on the width of the catchment but should extend a few metres on both sides of the catchment. Besure to divert the surface water to a place where it does not cause any erosion.

Finally, mark the location of the catchment with bench marks (pegs, or permanent stones) and complete the protection zone according to chapter 2.2 Protection Zone.

2.4.3 DRAWINGS OF TYPICAL GRAVITY SPRING CATCHMENTS

2.4.3.1 Spring Catchment in Line

1. Impervious strata
2. Water bearing soil
3. Cover of water bearing soil
4. Bed plate
5. Dry wall
6. Cover slab
7. Perforated pipe
8. Gravel
9. Watertight cover
10. Dam
11. Permeable material
12. Impermeable backfilling
13. Supply pipe
14. Seepage water drain pipe

Cross section type 1

Cross Section type 2

-56-

2.4.3.2 Spring Catchment in V - or T - Form

Sectional Elevation

Section A-A

2.4.3.3 Catchment of various Small Springs

ṡection b-b

SECTION C-C

-58-
2.4.3.4 Catchment of Springs in Rocky Areas or Steep Hills

-59-

2.5 ARTESIAN SPRINGS

2.5.1 GENERAL REMARKS

In an artesian spring the water seeps more or less vertically out of the ground, forced upwards by hydrostatic pressure (see pictures below).

This type of a spring is less common than a gravity spring, therefore on the following pages we will only briefly discuss artesian springs.

2.5.2 CATCHMENT OF ARTESIAN SPRINGS

The water of an artesian spring enters the catchment through the bottom. Therefore, the catchment looks like a well with the difference that the water flows out of the catchment under the force of gravity and it is not necessary to extract it mechanically.

Catchment of an Artesian Spring

2.5.3 ARTESIAN SPRINGS IN HARD, STABLE SOIL

2.5.3.1 Excavation

The excavation starts at the point where the water emerges from the ground and proceeds downward against the flow of water to a depth of 1.5 to 2 metres. The following points have to be considered:

- Excavation done by hand.
- No blasting possible (it could cause underground cracks through which the spring could disappear).
- Pores and cracks through which water is emerging must not be blocked.
- Deposit the excavated material away from the excavation area.
- Ensure a free flow of the spring water away from the excavation area.
- Ensure that the side walls of the excavation do not collapse.

2.5.3.2 Catchment of Artesian Springs

Once the excavation is completed the catchment has to be designed and constructed. It looks very much like a hand-dug well; a circular or rectangular wall collects the water entering through the bottom of it and directs the water into the supply system. The walls have to be built $30-50 \mathrm{~cm}$ higher than the water table (be sure that the max. yieid can be drained from the catchment). At the lowest possible point, the source line is placed into the wall of the catchment.
In most cases the spring water does not emerge at one particular spot only,but appears over a certain area. It is up to the supervisor of the project to decide whether one large catchment or several smaller ones have to be built.
The walls of the catchment can be built with concrete or stone masonry(must be watertight) and on top of a concrete foundation of a depth of min. 20 cm , which is cast directly against the ground.
In hard, stable soil no filter package is needed to prevent the water bearing layer from getting washed out.
The catchment has to be covered with a precast concrete slab. Before designing the size of the catchment, remember that it will be covered after completion and that the covering-slab for a large catchment will be very heavy and difficult to move on to the catchment walls. Be sure that the cover seals the catchment completely to prevent it from becoming contaminated.
The area around and on top of the catchment(s) has to be backfilled with excavated material. Backfill in layers of $20-30 \mathrm{~cm}$ and compact each layer well.

2.5.4 ARTESIAN SPRINGS IN LOOSE SOIL

The excavation of an artesian spring in loose soil has to be done in the same way as a well is dug in loose or sandy soil: by caissoning. The excavation is done inside a precast concrete ring to prevent the side walls from collapsing. The precast concrete rings will sink under their own weight while the excavation is going on. Please refer to the manual Construction of Hand-Dug Wells in Rural Villages in Sri Lanka. In that manual you will find detailed instructions on how to proceed with the above mentioned method of caissoning.

2.6 COMMON MISTAKES OCCURRING IN SPRING CATCHMENTS

LEGEND

(a) no surface run off water interception drain
(b) unsuitable backfilling material (permeable)
(c) no watertight cover
(d) cover of water bearing soil inadequate
(e) top of control / collection chamber below ground level
(f) no dam or dam with too short wing-walls and/or insufficient depth of dam foundation
(g) *leakages from pipe joints
(h) position (elevation) of overflow to high
(i) position (elecation) of outlet to high 1)
(k) insufficient overflow capacity
surface water is able to pollute spring water
loss of spring water
obstruction to spring flow and impounding of spring ${ }^{2}$)

Note: 1) in relation to spring horizon
2) spring may find an other outlet to overcome the obstruction

3 COLLECTION CHAMBER AND / OR SEDIMENTATION CHAMBER / SILT BOX

Very often a silt box can serve both as sedimentation chamber and as a collection chamber. It has to be built as close to the catchment as possible. The floor and the walls have to be watertight and the corners and edges (inside) have to be bevelled. Be sure that the outlet pipe is aerated so that it can be shut down without the outflowing water creating a vacuum in the pipe.

Standard Drawings:

- S-01, Silt Box (type A), Volume = 300-800 I
- S-02, Silt Box (type B), Volume = 300-800 I
- S-03, Silt Box with Valve Chamber (type A), Volume =1000-2000 I
- S-04, Silt Box, (type B), Volume = 1000-2000 I
- S-05, Silt Box with Valve Chamber (type A), Volume = 300-8001
- C-03, Pressure Break or Collection Chamber (type A + B)

4 STORAGE TANK

4.1 GENERAL REMARKS

The construction of a storage tank requires the coordinated tasks of a lot of people. The supervisor has to plan the construction procedure well inadvance and he has to make sure that all materials are available at the time they are needed. There are two different types of storage tanks:

Stone Masonry: The walls and the (arched) roof are made of stone masonry. The design of this type of tank was developed by HELVETAS in Cameroon and was later introduced in other countries (e.g. Sri Lanka). Its advantages are sturdiness and low maintenance. But it also has some serious drawbacks. Considerable quantities of stone, cement and sand are required. It proved to be difficult to produce watertight constructions mainly because of the quality of the stones and the fact that local craftsmen are not always familiar with stone masonry technology.

- Ferrocement: These tanks require less cement, stones and gravel, and are cheaper and quicker to build. They consist of sand-cement mortar heavily reinforced with rods and chicken wire. The reinforcement, with a layer of chicken wire on both sides (inside + outside), is embedded in mortar made of one part cement and two parts sand (1:2). Ferrocement is particularly suitable for curved structures, such as circular tanks. The main advantages of this type of material are low cost, simplicity of construction and durability. According to studies done in Nepal, ferrocement tanks are $25 \%-50 \%$ cheaper than stone masonry tanks.

Standard Drawings:

- T-01, Storage Tank (type A), Volume $=2-5 \mathrm{~m}^{3}$
- T-02, Storage Tank (type B), Volume = $2-5 \mathrm{~m}^{3}$
- T-03, Storage Tank (type A), Volume = 6.5-12 m^{3}
- T-04, Storage Tank (type B), Volume $=6.5-12 \mathrm{~m}^{3}$
- T-05, Storage Tank (Ferrocement), Volume $=2-15 \mathrm{~m}^{3}$, (Drawing No. 1)
- T-06, Storage Tank (Ferrocement), Volume =2-15 m³, (Drawing No. 2)

4.2 CONSTRUCTION SCHEDULE FOR FERROCEMENT STORAGE TANKS

This construction schedule for ferrocement storage tanks is intended as a guide to enable you to construct ferrocement tanks within the shortest possible period of time. It also helps to plan the required community participation for each day. This time schedule will not differ much for the construction of $8 \mathrm{~m}^{3}, 10 \mathrm{~m}^{3}$ or $15 \mathrm{~m}^{3}$ tanks, provided that good supervision and sufficient community participation is ensured.

Preparation of Work Site:

The following preparations must be completed in advance to keep to the time schedule:

- All required building materials (according to the material list on the standard drawing) have to be collected and stored at the construction site.
- All necessary equipment, like formwork for walls and roof, planks for shuttering and bracing, etc., have to be made available.
- All installations, like washout, overflow, inlet, outlet, etc., have to be prepared and made ready for use.
- All reinforcement bars have to be purchased and cut and bent according to the table on the standard drawing.
- The stone soling (20 cm , sloping 10 cm towards washout) has to be constructed and the support pipe (PVC ø 50 mm , filled with cement mortar)has to be set up.
- Please refer to standard drawing no. T-05 and T-06!

CONSTRUCTION SCHEDULE:

1st day:	Installations:	Washout, overflow, inlet, supply Reinforcement: Foundation slab steel bars Foundation: Concrete 1:2.5:4, topping $1: 3$ wet in wet
2nd day:	Preparation:	Cover fresh topping of foundation to avoid damage Reinforcement: Wall steel bars Wall formwork: P.E. pipe ø 32 mm
3rd day:	Wall formwork:	P.E. pipe $\varnothing 32 \mathrm{~mm}$ Reinforcement: Chicken wire, plain wire $\varnothing 3.5 \mathrm{~mm}$, spacing 2.5 cm
4th day:	Plastering:	1st coat $1: 3$ for wall (outside), thickness $2-3 \mathrm{~cm}$, surface rough 2nd coat $1: 3$ for wall (outside), thickness $1-2 \mathrm{~cm}$, surface floated. The 2nd coat is only applied once the 1 st coat has set. The water/cement ratio should be $0.45-0.50$.
5th day:	Curing:	1st and 2nd coat on wall (outside) can harden
6th day:	Curing:	Cover the wall with suitable material and keep it wet 7th day: Curing:

8th day:	Preparation: Plastering:	Remove the wall formwork 1st coat 1:4 for wall (inside), thickness $2-3 \mathrm{~cm}$, surface floated 2nd coat cement paste, thickness $1-2 \mathrm{~mm}$. Apply the cement paste up to $5-10 \mathrm{~cm}$ above max. water level.
9th day:	Reinforcement: Formwork: Reinforcement: Roof formwork:	Roof steel bars Formwork for manhole ($45 \times 60 \mathrm{~cm}$) Plain wire $\varnothing 3.5 \mathrm{~mm}$ / chicken wire Hardboard
10th day:	Plastering:	1st coat 1:3 for roof (outside), thickness $3-4 \mathrm{~cm}$, surface floated.
17th day 24th day:	Formwork: Plastering:	Remove roof formwork 2nd coat 1:3 for roof (inside), thickness 2-3 cm

5 BREAK PRESSURE TANK (BPT)

There is no minimum required capacity for a BPT as long as the water is able to drain from the BPT as fast as it is discharged into it. The dimensions are more influenced by the size of the installations / fittings.

There are two standardized types: Type A and type B. Type B needs less materials and is cheaper to build. Both types can be fitted with or without a ball (float) valve. A ball valve has to be installed in case the flow of the inlet pipeline has to be controlled.

Standard Drawing: C-03, Break Pressure Tank or Collection Chamber (Type A and B)

6 DISTRIBUTION CHAMBER

Although there is only one type of distribution chamber standardized, various distribution ratios are possible. The size of the distribution chamber depends upon the installations / fittings installed.
It is important that the tops of the outlet elbows are on the same elevation/level to guarantee an equal distribution according to the distribution ratio.

Standard Drawing: C-04, Distribution Chamber

7 VALVE CHAMBER

There are two types of valve chambers standardized. The choice of either of them depends upon the number of supply pipes. Remember that each valve has to be protected by a valve chamber. There should not be any valves freely accessible to outsiders.

Standard Drawing: - C-01, Valve Chamber $60 \times 45 \mathrm{~cm}$

- C-02, Valve Chamber $60 \times 90 \mathrm{~cm}$

8 PIPELINE CONSTRUCTION

8.1 GENERAL REMARKS

The construction of the pipeline is a very laborious task. Often, due to bad management and/or supervision, the pipeline works are excessively prolonged which drains away the enthusiasm of the community. It is important, therefore, that the pipeline work is done properly the first time. It is very frustrating to locate an internal blockage as a result of carelessness, or to have to re-dig the trenchline because the depth is incorrect.
It is very important that the site supervisor keeps the following points in mind:

- The supervisor should be a technical consultant, assisting the local community and he should make use of village individuals who emerge as natural foremen.
- The most difficult part of the trenchline should be tackled first when enthusiasm is still high.
- The pipe should be laid as continuously as possible to avoid the trench from becoming filled in. As soon as the pipeline is laid, the trench can be backfilled.
- The total work has to be divided into different parts on which the villagers can work simultaneously.
It is necessary to be firm on standards and procedures which cannot be altered (e.g. depth of trench). The supervisor has to insist on these from the beginning. This will create fewer problems later on.

8.2 TRENCH WORKS

8.2.1 GENERAL REMARKS

The pipeline should be laid along the straightest possible route; along the same route as the hydraulic survey. Whenever one has to deviate from the survey route, the supervisor has to re-survey the new section to determine how it will effect the HGL of the system. The slope of the pipeline should be min. 1%. One stretch of a pipeline should be laid with either a continuous rise or a continuous fall. Where the slope changes from rise to fall an air release has to be installed. Where the slope changes from fall to rise a washout has to be installed (see chapter 10 Installations).

8.2.2 SIZE OF TRENCHES

The width of the trench depends on:

- Diameter of pipe
- Type of soil and soil condition
- Practical working condition etc.

A practical width will be 40 cm .

The depth of the trench depends on:

- Climate (Temperature)
- Type of soil and soil condition
- Location of pipeline (paddy fields, roads, etc.) etc.

From our experience we recommend the following depths for trenches:

- Generally: $\quad 0.60 \mathrm{~m}$
- Crossing minor roads: $\quad \mathbf{1 . 0 0} \mathbf{m}$
- Crossing main roads: 1.50 m

With above depths, a pipeline is well protected against weight (and sharp hooves) of animals walking over it; it is well below the depth of plough; it is insulated against great variations of temperature; it is protected against tampering by children, etc. The depths given are minimum depths and they must not be reduced! The supervisor of a GWSS has to explain to the local community the reason for burying the pipeline and he has to insist on the min. depths of the trenches.

8.2.3 LAYING OF PIPES

The pipes should be laid on firm ground and rocks or stones should be removed from the bottom of the trenches to prevent the pipe from getting damaged by them. The pipe should be supported over its entire length and not only under its couplings.

correct, pipe is supported over its entire length
wrong, pipe is supported under couplings only

wrong,
pipe is not supported over its entire length

Immediately before any pipe is going to be laid into the trench, the pipe should be checked for: Cracks, blemishes, holes, etc. Do not forget to check the interior of the pipes as well!

8.2.4 BACKFILLING OF TRENCHES

As soon as the pipe has been laid, the trench should be backfilled, at least partially. The backfilling has to be done in layers of $20-30 \mathrm{~cm}$. The first layer must not contain any sharp materials like stones, rocks,branches, etc. Once the pipe is covered with a soft soil layer of about 20 cm the excavated material can be used for backfilling. Do not backfill the full trench before each pipeline section is tested against leakages.

Backilling of Trench before Leakage-Test

8.2.5 THRUST-BLOCKS

Whenever the pipeline changes its direction the water pressure in the pipe exerts a certain force on the pipeline. These thrusts can be surprisingly high and it is necessary to absorb them with thrust-blocks. Without such thrust-blocks, the pipeline can easily become damaged.

Thrust at End of Pipe:

Below, you find a table with the thrusts for different pipe diameters and various bends. The calculations were done for a water pressure of $0.5 \mathrm{~N} / \mathrm{mm}^{2} \approx 50 \mathrm{~m}$ of head $\approx 500 \mathrm{kPa}$. If you want to calculate the thrust for another pressure just divide the thrust given in the table by 0.5 and multiply it with the pressure you want.

Example: What is the thrust on a bend , $\sigma=45^{\circ}$, pipe $\varnothing=75 \mathrm{~mm}$,

$$
\mathrm{p}=0.8 \mathrm{~N} / \mathrm{mm}^{2}(\approx 80 \mathrm{~m} \text { of head }) ?
$$

Solution: table below: $\sigma=45^{\circ}$

$$
\sigma=75 \mathrm{~mm} \quad \rightarrow \text { thrust } \mathrm{R}_{1}=1.69 \mathrm{kN}
$$

$\mathrm{P}=0.5 \mathrm{~N} / \mathrm{mm}^{2}$
$p=0.8 \mathrm{~N} / \mathrm{mm}^{2} \longrightarrow R=\frac{\mathrm{R1}}{0.5} \times 0.8=\underline{2.70} \mathrm{kN}(\approx 270 \mathrm{~kg})$
Also included in the table below are the thrusts on a T (branch) for the different pipe diameters for a pressure of $0.5 \mathrm{~N} / \mathrm{mm}^{2}$. The calculations for other pressures are the same as above. The thrust on a T-branch is about 70% of P.

Thrust on Bends and T - branches for a Pressure of $0.5 \mathrm{~N} / \mathrm{mm}^{2}$ ($=50 \mathrm{~m}$ of head) in kN ($=100 \mathrm{~kg}$)

g of Pipe	at Pipe Plug	at Bends with an Angle of					at T-
15°	30°	45°	60°	90°	Branch		
50	0.98	0.26	0.51	0.75	0.98	1.39	0.69
63	1.56	0.41	0.81	1.19	1.56	2.20	1.10
75	2.21	0.56	1.14	1.69	2.21	3.12	1.55
90	3.18	0.83	1.65	2.44	3.18	4.50	2.23

For small pipe diameters ($20-40 \mathrm{~mm}$) the thrust is little and therefore not included in the above table.

If the thrust is absorbed by a thrust-block you have to make sure that the surrounding ground can support the concrete thrust-block (the permissible soil bearing capacity must be bigger than the pressure exerted by the thrust block).

Examples:

A) What is the size of the thrust-block in the sketch on the right? Permissible soil-bearing capacity σ perm. $=0.075 \mathrm{~N} / \mathrm{mm}^{2}$

Solution:

Table $>$ T-branch: $P=\frac{1.55}{0.5} \times 1.0=3.1 \mathrm{kN}$
Required thrust-block area: $A_{\text {req. }}=\frac{P}{\sigma_{\text {perm. }}}=\frac{3100}{0.075} \times 10-2=\underline{413 \mathrm{~cm}^{2}}$
chosen: Thrust-block $20 \times 30 \mathrm{~cm}=600 \mathrm{~cm}^{2}$
B) What is the required volume of the thrust-block in the sketch on the right?

Weight of concrete: $24 \mathrm{kN} / \mathrm{m}^{3}$
Solution:
$\sigma=45^{\circ} \quad 2.44$
$\varnothing=90 \mathrm{~mm} \quad->$ table $\rightarrow P=-\quad \times 1.0=4.88 \mathrm{kN}$
$p=1.0 \mathrm{~N} / \mathrm{mm}^{2} \quad 0.50$
Volume of block: $V=\frac{4.88}{24}=\underline{\underline{0.20 ~ m}}$
chosen: $0.6 \times 0.6 \times 0.6 \mathrm{~m}=0.22 \mathrm{~m}^{3}$

8.2.6 MARKING OF PIPELINE

The route of the pipeline has to be marked to enable the users of the system to locate it after several years of use in case some repair works are necessary.
Immediately after the trench has been backfilled the route of the pipeline has to be marked with permanent pegs. It is easiest to use concrete pegs on which the following information can be mentioned:

- Material of pipe and \varnothing of pipe
- Direction of route of pipeline
- Continuous numbering of pegs

8.2.7 DIFFICULTIES IN TRENCH WORK

8.2.7.1 Trench Work in Hard or Rocky Ground

8.2.7.2 Stream or Gully Crossings

Narrow, deep gullies or streams can be crossed by a span of Gl pipe above the bottom of the gully, clear of the maximum flood level.

In broader gullies, the pipeline has to be buried as well as possible. Importance has to be given to a good anchorage.

9 TAPSTANDS

The following is an abstract from the "Handbook of Gravity-Flow Water Systems" by T.D. Jordan Jr.: "The tapstands are the most frequently used component of the entire system. No other structure will face more abuse than these, and no other structure will have to fit in so closely with local, social and cultural needs.
A tapstand is more than just a physical structure. It will become a new and important gathering point of the village. Properly designed and built, the tapstand will be a clean, attractive and inviting place. Poorly completed, it will be a dirty, muddy, unhygienic eyesore."

We standardized three different tapstands. The first one is attached to a storage tank. The second one was standardized in 1986 and revised in 1988. In comparison with the third one, the second requires more materials for its construction and is, therefore, more expensive. Otherwise it is just a matter of preference.

Standard Drawings:

V-01, Tap Attached to Storage Tank Type A + B
V-02, Standpost " 86 "
V-03, Standpost "88"

10 INSTALLATIONS

10.1 AIR RELEASE / ANTI VACUUM VALVE

As mentioned in the first part of this manual, 6.10.1 Air valves/Air Releases, and in chapter 8.2.1 General Remarks of the second part, at each high point an air release has to be installed. An air release can be:

- Air Valve
- Standpost / Standpipe

Open Pipe
Besides these high points, there are other locations along a pipeline where an air release or, better, an anti-vacuum valve has to be installed. There should be a device to ventilate a pipeline after each main valve. This prevents the building up of a vacuum when the main valve is closed and the water drains from the pipe.
Below you will find a few examples of air releases/anti-vacuum valves:

Alternative methods

Anti-Vacuum Valves

After closing the main valve the ventilation valve must be opened (prevention of vacuum)

Be sure to install air valves well above the highest possible ground water level. Otherwise, polluted ground water could enter into the pipeline. Similarly, be sure to drain the valve box appropriately!

10.2 WASHOUTS

As mentioned in the first part of this manual, 6.10.2 Washouts and in chapter 8.2.1 General Remarks of the second part of this manual, at each low point a washout has to be installed. Wash outs can be:

- Plug
- Valve
- Standpipe

A washout pipe should be of the same size as the pipeline at that point. Plugs require that the pipeline will be completely drained, which is not the case if a valve (gate valve) is installed.
Remove the handles of such valves and store them in a safe place. Additionally, the valves should be well protected inside a valve chamber to prevent them from being tampered with. If a plug is used, ensure that it cannot be removed by hand.

10.3 SECTIONAL VALVES

As mentioned in the first part of this manual, in chapter 6.10.3 Sectional Valves, such sectional valves have to be installed for two reasons:

- Parts of the supply system can be shut off for repair works
- Flow can be rationed in case of a severe drought

Sectional valves on long main lines should be located at a distance of $2-3 \mathrm{~km}$ and it is important to keep in mind that the shut off part of the pipeline can be ventilated (see chapter 10.1 Air release/Anti-Vacuum Valve).
On distribution lines, sectional valves should be installed so that they control three to five standposts. Whenever possible, a sectional valve should be combined with an air release or wash out. For branch lines, the sectional valve should be located at the branch-off.

APPENDIX

APPENDIX 1

REFERENCES AND BIBLIOGRAPHY

Boot, M. and Heijnen, H. (1988). Ten Years of Experience, Community Water Supply and Sanitation Programme, Pokhara, Western Development Region, Nepal (The Hague: IRC).

Cairncross, S. and Feachem, R.G. (1990). Environmental Health Engineering in the Tropics: An Introductory Text (London: John Wiley).

Cairncross, S. and Feachem, R.G. (1978). Small Water Supplies, Ross Bulletin No. 10 (London: Ross institute).

Central Industries Limited (1990). National PVC User Handbook (Colombo: Central Industries Limited).

Cowater International, Inc. (1991). Rural Water Supply District Development Plans (Matara, Ratnapura and Badulla Districts): Vol.I, Summary (Colombo: Cowater International, Inc., National Water Supply \& Drainage Board and UNDP/World Bank).

Cowater International, Inc. (1991). Rural Water Supply District Development Plans (Matara, Ratnapura and Badulla Districts): Vol.II, Institutions, Policy, Implementation Strategy (Colombo: Cowater International, Inc., National Water Supply \& Drainage Board and UNDP/World Bank).

CWSSP Western Region, Nepal (1990), Design Guidelines for Rural Water Supply Systems (Pokhara: Ministry of Housing and Physical Planning, Dep. of Water Supply and Sewerage, Regional Directorate).

CWSSP Western Region, Nepal (1990). Standardisation for Rural Water Supply Systems (Pokhara: Ministry of Housing and Physical Planning, Dep. of Water Supply and Sewerage, Regional Directorate).

HELVETAS (1989). History of Water Supply Projects, Constructed from 1964 to1970, CD/HELVETAS Co-operation in Cameroon 1964-1989 (Yaoundé: HELVETAS).

HELVETAS (1989). Evaluation of Water Supply Systems, Constructed from 1964 to 1989, CD/HELVETAS Co-operation in Cameroon 1964-1989 (Yaoundé:HELVETAS).

IRC (1987). Small Community Water Supplies, Technical Paper Series 18 (The Hague: IRC).
Island Newspaper (Sri Lanka). Population: Achieve Zero Growth by Year 2000, Excerpts of a Talk by Harindra Dunuwille, MP of Kandy (Colombo: Island Newspaper).

Jayaweera, P. (1991). Refresher Course for Hydraulics (Moratuwa: Sarvodaya Rural Technical Service).

Jordan, D.T. Jnr. (1984). A Handbook of Gravity-Flow Water Systems (London: Intermediate Technology Publications and UNICEF).

Mutschmann, J. and Stimmelmayr, F. (1986) Taschenbuch der Wasserversorgung (Stuttgart: Franckh'sche Verlagshandlung).

Panchayat Development Training Centre, Pokhara (1990). Community Water Supply and Sanitation Foreman Course, Construction Part (Pokhara: Panchayat Development Training Centre).

Pfiffner, H. (1989). Correspondence Course on the Calculation \& Design of Gravity Water Supply Schemes (Kandy: Sarvodaya Rural Technical Serv.).

Pfiffner, H. and Jayaweera, P. (1989). Manual for Supervisors (Kandy: Sarvodaya Rural Technical Service).

Sandoz, P., Müller, H. and Engler, M. (1988). A Guide for Designing DWSS Projects (Kathmandu: IHDP / HMG).

Saunders, R.J. and Warford, J.J. (1976). Village Water Supply, Economics and Policy in the Developing World (London: John Hopkins University Press).

SKAT and ATOL (1985). Manual for Rural Water Supply (St. Gall: SKAT).
Stark, R., Steiner, U. and HELVETAS-Team Sri Lanka (1984). Manual of Standardisation for the Construction of Village Water Supplies in Sarvodaya Villages in Sri Lanka (Moratuwa: Sarvodaya Rural Technical Service).

Stark, R. and HELVETAS-Team Sri Lanka (1984). Caretaker Manual for Village Water Supplies Constructed by Sarvodaya Rural Technical Service (Kandy: Sarvodaya Rural Technical Service).

Waterlines Vol. 10, No. 1 (1991). Technical Brief No. 29 / Designing Simple Pipelines (London: WEDC).

Wehrli, K. (1985). Drinking Water Supply and Sanitation, Technical Aspects, Annex (St. Gall: SKAT).
Wehrli, K. (1987). Manual for Spring-Catchments (St. Gall: SKAT).
Wehrli, K. and Meuli, C. (1990). Spring Catchment, Layout-Muster (Text, Fotos und Illustrationen provisorisch) (St. Gall: SKAT).

WHO and IRC (1980). Evaluation for Village Water Supply Planning, Technical Paper Series 15 (The Hague: IRC).
APPENDIX 2
FORMS A-M
Form A: PRELIMINARY SURVEY A2/1
Form B: SPRING MEASUREMENTS A2/2
Form C: SITUATION SURVEY A2/3
Form D: HYDRAULIC SURVEY A2/4
Form E: FEASIBILITY OF PROJECT A2/5
Form F : FLOW RATE AT STANDPOSTS A2/6
Form G: VOLUME OF SEDIMENTATION CHAMBER / DISTRIBUTION RATIO A2/7
Form H: STORAGE TANK AND FLOW DIAGRAM A2/8
Form I: HYDRAULIC CALCULATION. A2/9
Form J: HYDRAULIC PROFILE A2/10
Form K: FRICTION LOSSES IN PVC PIPES A2/11
Form L: SYMBOLS FOR DRAWINGS. A2/12
Form M: EXAMPLE OF HEADER FOR SITUATION PLAN AND PIPE SCHEDULE A2/13

APPENDIX 3

STANDARD DRAWINGS

Number	Title
C-01	VALVE CHAMBER $60 \times 45 \mathrm{~cm}$
C-02	VALVE CHAMBER $60 \times 90 \mathrm{~cm}$
C-03	BREAK PRESSURE TANK OR COLLECTION CHAMBER (TYPE A \& B)
C-04	DISTRIBUTION CHAMBER
S-01	SILT BOX (TYPE A), VOLUME $=300-800 \mathrm{I}$
S-02	SILT BOX (TYPE B), VOLUME = 300-800 I
S-03	SILT BOX WITH VALVE CHAMBER (TYPE A) VOLUME = 1000-2000 I
S-04	SILT BOX (TYPE B), VOLUME $=1000 \cdot 20001$
S-05	SILT BOX WITH VALVE CHAMBER (TYPE A), VOLUME 300-8001
T-01	STORAGE TANK (TYPE A), VOLUME $=2.5 \mathrm{~m}^{3}$
T-02	STORAGE TANK (TYPE B), VOLUME $=2.5 \mathrm{~m}^{3}$
T-03	STORAGE TANK (TYPE A), VOLUME $=6.5-12 \mathrm{~m}^{3}$
T-04	STORAGE TANK (TYPE B), $6.5 \cdot 12 \mathrm{~m}^{3}$
T-05	STORAGE TANK (FERROCEMENT), VOLUME $=2-15 \mathrm{~m}^{3}$ (DRAWING NO.1)
T-06	STORAGE TANK (FERROCEMENT), VOLUME $=2-15 \mathrm{~m}^{3}$ (DRAWING NO. 2)
V-01	TAP ATTACHED TO STORAGE TANK TYPE A \& B
V-02	STANDPOST "86"
V. 03	STANDPOST "88"

PRELIMINARY SURVEY

Existing Infrastructure:

\qquad
\qquad
\qquad
\qquad

Dry Season (s):	From From		$\begin{aligned} & \text { To } \\ & \text { To } \end{aligned}$	
Wet Season (s):	From	To	
	From	To	
Water Sources:	- Present:			
	

\qquad
\qquad
\qquad
\qquad

Remarks: \qquad
\qquad
\qquad
\qquad
Encl. : hand sketch

Name of Village:

Division:
District:

Date of	Spring 1		Spring 2		Spring 3		Spring 4	
Measurement	Time	Yield	Time	Yield	Time	Yield	Time	Yield
	\ldots	\ldots		\ldots				
	
	
	\ldots	……..	\ldots		
	\ldots	……...	\cdots	..
	
	\ldots
-
.......................	\cdots	……..
		\cdots	……..	\cdots	
,	
.......................	\ldots	
			
	...	\cdots	\ldots	
................	
.......................	
	\ldots
	\ldots
...........		\cdots	\ldots	
			-		...			
					-
...
........................
.......................	\ldots	
	\ldots	-"	
.........................	\ldots
	

Remarks: Use always the same bucket and measure the yield at least once a week at the same spot. Measure the time in seconds (s) and calculate the yield in litres per second (//s)

SITUATION SURVEY

| Name of Village: .. | Name of Surveyor: | |
| :--- | :--- | :--- | :--- |
| Division: | $\ldots . ~$ | Designation: |
| District: | $\ldots . ~$ | Date: |

$\begin{aligned} & \text { Station } \\ & \text { (from - to) } \end{aligned}$	Compass Reading in grades	Distance m	Remarks and Sketches
...............		
...	
.....................

		
	\ldots
	

		
......	-	\qquad	..
.....................
...............
....................	
......................
......................	\ldots	...
......................	\ldots
...............................		$\begin{gathered} \\ \\ \hline \end{gathered}$	\ldots
................	
..............
....................	\ldots
…..................	
.............................			
		\qquad	
......................		
		
	.-................................	
		\qquad	
......................	
......................
......................	-	
…-........................
.......................	

HYDRAULIC SURVEY

FEASIBILITY OF PROJECT

Name of Village: \qquad Prepared by:

Division:

District:

- - .

Water Demand:

	Number (1)	Growth Factor (2)	Daily Consumption in I (3)	Demand (I/S) $=(1) \times(2) \times(3)$
Inhabitants				
Students				

Explanations:

(1) : Present Population
(2) : 1.24 (for 20 years)
(3): $45 \mathrm{l} / \mathrm{c} \times \mathrm{d}(30 \mathrm{1} / \mathrm{c} \times \mathrm{d}$ in exceptional cases)

Available Water:

	Spring 1	Spring 2	Spring 3	Spring 4	Total Yield
Max. Yield $(\mathrm{l} / \mathrm{s})(1)$					
\ldots Min. Yield $(\mathrm{l} / \mathrm{s})(2)$					

Explanations:

(1) : Highest yield measured (refer to spring measurements)
(2) : Lowest yield measured (refer to spring measurements)

Safety factor : 0.9
Total safe yield: $0.9 \times$ Tot. Min. Yield $=09 . \times$ \qquad I/s

Total safe yield per day : $0.9 \times$ Tot. Min. Yield $\times 86$ '400
\qquad = \qquad

Feasibility : Check appropriate box:
[] Project Feasible ; more water available than demanded
[] Project Not Feasible : less water available than demanded

FLOW RATE AT STANDPOSTS

Name of Village \qquad Prepared by:

Division:

District:

Flow at Standposts / Taps:

Explanations:

(1) : Future users (present population \times growth factor)
(2) : Mark from which storage tank the tap gets water and add up the number of people or pupils per storage tank.
(3) : Flow rate according to the number of users (0.1 or $0.2 \mathrm{l} / \mathrm{s}$)
(4) ; Give specific details e.g. tap for school, temple etc.

VOLUME OF SEDIMENTATION CHAMBER DISTRIBUTION RATIO

Name of Village :	Prepared by:
Division:	Designation:
District:	Date:

Volume of Sedimentation Chamber / Silt Box:

Flow (total maximum yield, see Form E):
Retention Time:
Capacity: $\quad \mathrm{C}=\mathrm{Q} \times \mathrm{T}=$

$$
\mathrm{C}=\mathrm{Q} \times \mathrm{T}=
$$

\qquad
Q
$T=1^{\prime} 200 \mathrm{~s}$
$\times 1^{\prime} 200=$
….................... 1

Select the correct sedimentation chamber / silt box from the standard drawing in the manual Construction and Standardisation of Gravity Water Supply Schemes in Rural Villages in Sri Lanka.

Water Demand per Storage Tank and Distribution Ratio:

Stor. Tank No.	No. of Beneficaries				Demand per		Distr. Factor (7)	Flow to Storage Tank (8)
	People (1)	l/d (2)	Pupils (3)	1/d (4)	Day (5)	Second (6)		
1				6				
2				6				
3				6				

Explanations:

(1) : No. of people
$(5)=(1) \times(2)+(3) \times(4)$
(2): $45 \mathrm{l} / \mathrm{d}(30 \mathrm{l} / \mathrm{d})$
$(6)=(5) / 86^{\prime} 400$
(3) : No. of pupils
(4): $6 \mathrm{l} / \mathrm{d}$
(7) : Distribution factor in comparison with
the other storage tanks
$(8)=$ Total safe yield distr. according to (7)

STORAGE TANK AND FLOW DIAGRAM

Name of Village:	Prepared by:
Division:	Designation:
District:	Date:

Volume of Storage Tank:

No. of Storage Tank:

Period	$\mathrm{Q}=. ~ / / \mathrm{s}$		$\begin{gathered} \text { Outlet } \\ \mathrm{D}=\ldots1 / \mathrm{d} \end{gathered}$		Difference +1 (3)	Water Level in litres (4)
	Seconds	(1) lit.	\%	(2) lit.		
05.30-08.30	10'800		30	
08.30-11.30	10'800		10		
11.30-13.30	7'200		15	
13.30-16.00	$9 ' 000$	10	
16.00-19.00	10'800		30	
19.00-05.30	37'800		5	
Daily Inlet = $=$ Daily Demand			Overflow
Tank is filled withinhours (must be less than 10 hours)						

Explanations:

(1) $=Q \times$ seconds
(2) $=\mathrm{D} \times \%$
$(3)=(1)-(2)$
(4) $=$ sum of (3)

Inlet Q: Flow of Inlet
Water Level: Indicate whether + or -
Min. Storage Capacity = smallest (4), (negative)
Tank chosen : Refer to Standard Drawings

Flow Diagram (hand sketch):

HYDRAULIC CALCULATION

HYDRAULIC PROFILE

Friction Losses in PVC Pipes

FRICTION FACTOR $\mathrm{I}=\mathrm{m} / 100 \mathrm{~m}, \%, \mathrm{~cm} / \mathrm{m}$

How to Read the
Drawing :
Exampte:
Design Flow $=0.3 \mathrm{~L}$
Pipe Length $=120 \mathrm{~m}$
Selected Pipe
$=40 \mathrm{~mm}(\mathrm{ISO})$
= O (MOIU NOISヨa) yヨLVM
Friction Lass =
From Drawing:

Result:
Friction Facto

$120 \mathrm{~m} \times 2.65 \mathrm{~m} / 100 \mathrm{~m}=3.1 \mathrm{~m}$

SYMBOLS FOR DRAWINGS

EXAMPLE OF HEADER FOR SITUATION PLAN AND PIPE SCHEDULE

Header:
Name and Address of Organisation
SITUATIONPLAN OF

Name of Project

Plan No. :	Date :		Date	by:
Scale:	Drawn by:	Amendments		
Map Sheet:	Surveyed by:			

Pipe Schedule:

ceonst:

Remarks:

Installations according to hydraulic calculations

๙งைอ బุతిర๙ VALVE CHAMBER $60 \times 45 \mathrm{~cm}$

ถฺ¢が	cement	Фఇっ00 bags	4.5
Ex	sand	m^{3}	0.7
Oroc med	metal	m^{3}	0.6
※2x｜c）以	stones	m^{3}	0.8
$5_{2} \mathrm{Cos}$	rebar of 6 mm	kg	4
G．I．ఇ¢ ๕己®z̨Cし	G．I．pipe／fittin		yes

E30ersi:

Remarks:
Installations according to hydraulic calculations
 20 mm

かைృ బูరెర๙ VALVE CHAMBER
 $60 \times 90 \mathrm{~cm}$

¢ต®ชర	cement	bags	6
08	sand	M^{3}	0.9
	metal 20 mm	M ${ }^{3}$	0.8
Exsmos	stones	M^{3}	1
Oరocrige	rebar $\varnothing 6 \mathrm{~mm}$	kg	6
G.I. nc	G.I. pipe fittings		yes

※でどo PLAN VIEW

Sns）（WITH OR WITHOUT BALL VALVE）

B อరns TYPE B

ఱ゙でぱత PLAN VIEW

Sege	Enc: Date:	April 1992		enocs Date:	$\begin{aligned} & 86{ }_{205} \\ & \text { By: } \end{aligned}$
enerse ale:	Drawn by:	Kumuduni	Amendments		
.ise ip Sheet:	Шひeq్ moe Designed by:	R. St. \& H. Pf			

รอు cఙణిణีอ List of materials

Y ox

	A ogose Type A	B Déscs Type B
	9	7
$\begin{array}{ll} e_{4} \mathrm{E} \\ \text { sand } & \mathrm{m}^{3} \end{array}$	1.2	0.9
$\begin{array}{ll} \text { ఇoc ncf } \\ \text { metal } \end{array} \mathrm{m}^{3}$	1	0.8
	1.2	1
rebar 』 6 mm kg	10	6
อృสวใ बequ steel door	1	.-
8. G.I. pipe fittings	no	yes

[^1]

ゼてzぱ PLAN VIEW

Distribution ratio (according to hydraulic calculations $=2: 5$)

Diameter of outlets: either 25 mm and 63 mm or 20 mm and 50 mm
$\mathrm{E}_{\text {亿çars }}$
ఆరత్ అల
Important:
The tops of the outlet elbows have to be on the same elevation / level.

లెఠఎદ్రత ఇిరిర๙ DISTRIBUTION CHAMBER

 n No． C-04	छัヵ๙： Date：	April 1992		Eros Date：	$\begin{gathered} \text { ฮెఆzr } \\ \mathrm{By}: \end{gathered}$
0лй：	Drawn by：	Kumuduni	セงตตcadธo Amendments		
cce p Sheet：	セuge m we Designed by：	H．Pf			

çox cuerme List of materials

せต®xర		5
$\mathrm{E}_{2} 8$	sand $\quad M^{3}$	0.5
$3 / 4$＠っd ¢8	metal $\quad M^{3}$	0.3
	stones（shaped）pcs	250
Orర920 \varnothing © $\sqrt{6} 6$ 包	reinforcements 6 mm kg	1
	baffle plate	1
G．I．me	G．I．pipe	yes

※゙C\＆゚゚ PLAN VIEW

	300 L	400 L	500 L	600 L	700 L	800 L
A	170	170	190	205	210	225
B	100	100	120	135	140	155
C	150	160	170	175	185	185
D	50	60	70	75	85	85
E	75	85	95	100	110	110

あもめが

Note：

Sizes of inlet and outlet according to hydraulic calculations．

SILT BOX（TYPE A）

๙8＠っว 300 ह．จ 800 e．Volume $300 \mathrm{~L}-800 \mathrm{~L}$

$\begin{aligned} & \text { cege fo mos: } \\ & \text { in No. } \end{aligned}$	S－01	¢ 2 m Date：	April 1992		$\begin{aligned} & \text { conw } \\ & \text { Date: } \end{aligned}$	$\begin{aligned} & \text { 3вıs } \\ & \text { By: } \end{aligned}$
；泡的： ale：	1：20	$489(0) 00$ Drawn by：	Kumuduni			
Bice 3 刃c： ：p Sheet：		Designed by	R．St．\＆H．Pf			

eఒజజీఃุอ List of materials

	300 L	400 L	500 L	600 L	700 L	800 L
E®er゙ァi cement emu0u bags	11	13	15	16	19	20
2000 sand m^{3}	1.2	1.9	1.8	2.1	2.4	2.8
U＇心U metal m^{3}	0.5	0.6	0.7	0.8	0.9	1.0
Ojzucline stones pcs	240	260	310	350	390	420
Wdemuchernerstones pcs	45	55	65	70	75	85
nçue rebaro 6 mm kg	5	6	7	8	9	10
8 ncouy baffle plate pc	1	1	1	1	1	1
$\begin{aligned} & \text { entrance door pc } \\ & 60 \times 60 \mathrm{~cm} \\ & \hline \end{aligned}$	1	1	1	1	1	1

000\%n:

Note:
Sizes of inlet and outlet according to hydraulic calculations.

SILT BOX（TYPE B）

ఆ8అృ 300 セ． 800 ๕．Volume $300 \mathrm{~L}-800 \mathrm{~L}$

scese qomcs： ＇lan No．	$S=02$	830 Date：	April 1992		$\hat{\xi} s \infty$ Date:	$\begin{aligned} & \text { Bes } \\ & \mathrm{By}: \end{aligned}$
80， Scale：	1：20	 Drawn by：	Kumuduni	ジロールがルシ Amendments		
36sc or Map Sheet：	－－	Designed by：	R．St．\＆H．Pf			

C，（జీఃูల List of materials

	Volume of silt box					
	300	400	500	600	700	800
acents cement unou bags	10	11	13	14	16	17
cend m^{3}	1	1.3	1.5	1.8	2	2.3
mecter metal m^{3}	0.5	0.6	0.7	0.8	0.9	1
304 00.	200	220	260	290	320	350
$3{ }^{3} \mathrm{CO}$	30	40	50	55	60	70
Conatye rebar 06 mm kg	4	5	6	7	8	9
N\％wombafle plate	1	1	1	1	1	1
	yes	yes	yes	yes	yes	yes

ఱిでజ゚త PLAN VIEW

 SILT BOX WITH VALVE CHAMBER（TYPE A）

ncy Ian No．	S－03	Enc： Date：	April 1992		Date：	$\begin{gathered} 500 \\ \text { By: } \end{gathered}$
s8®軥む： icale：	1：20	oifo eras Drawn by：	Kumuduni	Amendments		
Birscse sguc： Jap Sheet：	－	太u゙umin Designed by：	R．St．\＆H．Pf			

	Volume of silt box			
	1000 L	1200 L	1500 L	2000 L
	22	24	26	30
Ox moee sand \mathbf{M}^{3}	2.9	3.1	3.5	4
	1.3	1.4	1.5	1.7
（3） 3 药	450	530	600	870
Qut ω U wre corner stones pcs	90	105	120	150
Conctige rebara 6 mm kg	12	14	16	19
nety baffle plate pc	1	1	1	1
	1	1	1	1

MEASUREMENTS / DIMENSIONS IN CM

$2: 3$ re-rods $\varnothing 6, d=15 \mathrm{~mm}$ crosswise
 ide key pointing
 dith cement paste

	Volume of silt box			
	1000 L	1200 L	1500 L	2000 L
A	220	230	250	285
B	150	160	180	215
C	122	127	137	147
D	85	90	100	110
E	82.5	87.5	97.5	115

EOssm:
 Note:
Sizes of inlet and outlet according to hydraulic calculations.

 SILT BOX（TYPE B）

38＠っอ 1000 ह．ริ 2000 ع．Volume 1000 L－ 2000 L

Hege equsc： ＇lan No． $\text { S - } 04$	Enc： Date：	April 1992		दु） Date：	$\begin{aligned} & 3 \Omega s \\ & \mathrm{By}: \end{aligned}$
$\begin{aligned} & \text { s80 } 1: 20 \\ & \text { icale: } \quad 1: 20 \end{aligned}$	980 Drawn by：	Kumuduni	Amendments		
Tricse Nap Sheet：	టicgut mod Designed by：	R．St．\＆H．Pf			

cอ＞c飞జิజ์รูอ List of materials

	Volume of silt box			
	1000 L	1200 L	1500 L	2000 L
Querri cement ¢20）	19	21	23	25
0,8 sand M^{3}	2.5	2.7	2.8	3
$\begin{array}{ll} 3 / 4 \\ \text { exd od metal } \end{array} \mathrm{M}^{3}$	1.2	1.3	1.4	1.6
छrst ce line stones pcs	380	410	480	570
Éd Cod corner stones pcs	75	80	85	90
Obocribe rebar 06 mm kg	11	13	15	17
万力心夊 meny baffle plate pcs	1	1	1	1
DC ejumul G．l．pipes fittings	yes	yes	yes	yes

\rightarrow precast concrete slabs $1: 2: 3$ reinforced $\varnothing 6 \mathrm{~mm}, \mathrm{~d}=15 \mathrm{~cm}$ crosswise

－ 4 coats of plastering

Plan N

089
Scale：

Encs Map St

卫® SECTION X－X

	Volume of silt box						
	300 L	400 L	500 L	600 L	700 L	800 L	
A	235	245	250	265	265	275	
B	75	85	90	105	105	115	
C	132	142	152	157	167	167	
D	50	60	70	75	85	85	
E	75	85	95	100	110	110	

®\％త
02 C
Orsb
G⿹丁口欠
－00m
8อిటిర

esess：

Note：

Sizes of inlet and outlet according to hydraulic calculations．

SILT BOX WITH VALVE CHAMBER (TYPE A)

ง 8 @っอ 300 ع. © 800 \&. Volume $300 \mathrm{~L}-800 \mathrm{~L}$

ธฺఆ

	conxied zexou Volume of sill box					
	300 L	400 L	500 L	600 L	700 L	800 L
cement $\begin{array}{r}\text { ¢isujo } \\ \text { bags }\end{array}$	14	16	17	19	20	22
sand 5000 M^{3}	1.5	2.0	2.3	2.5	2.7	3.0
© ${ }^{-8}$ metal 20 mm	0.6	0.7	0.8	0.9	1.0	1.1
line stones pcs	300	340	400	430	510	550
corner stones pcs	60	75	85	95	105	120
$-59 t^{r}$ $\text { rebar } \varnothing 6 \mathrm{~mm} \mathrm{~kg}$	7	8	9	10	11	12
,	1	1	1	1	1	1
$\begin{aligned} & \text { entrance door pcs } \\ & 60 \times 60 \mathrm{~cm} \end{aligned}$	1	1	1	1	1	1

 precast concrete slabs 1：2：3 reinforced $\varnothing 6, d=15$ crosswise

X

SECTION Y - Y

 MEASUREMENTS / DIMENSIONS IN CM

	Volume of tank			
	$2 \mathrm{M}^{3}$	$3 \mathrm{M}^{3}$	$4 \mathrm{M}^{3}$	$5 \mathrm{M}^{3}$
A	310	380	400	455
B	300	370	390	445
C	140	210	230	285
D	120	120	145	145
E	55	55	80	80

Note:
Sizes of inlet and outlet according to hydraulic calculations.

 STORAGE TANK (TYPE A)

๕8๑อ 2-5త ${ }^{3}$ Volume 2-5 m

なo qows: No. $T=01$	$\xi \supseteq \infty:$ Date:	April 1992		Ran Date:	$\begin{aligned} & \text { ठิజs } \\ & \mathrm{By}: \end{aligned}$
e: 1:25	4を Drawn by:	Kumuduni	Amendments		
Sheet:	23g me me Designed by:	R. St. \& H. Pf			

			Volume of tank			
			$2 \mathrm{~m}^{3}$	$3 \mathrm{~m}^{3}$	$4 \mathrm{~m}^{3}$	$5 \mathrm{~m}^{3}$
®๔(x)\%	cement ¢\%n)	bags	30	36	40	45
0_{0}	sand	M^{3}	4.2	4.8	5.6	6.1
3 c	lime stones	pcs	1950	2150	2450	2650
gic ω cr	corner stones	pcs	150	150	180	180
Exsm Cd	unshaped stones	M^{3}	1.5	1.7	2.0	2.3
3/4* ¢	metal 20 mm	M^{3}	1.5	1.9	2.1	2.4
E,Gousize	rebar $\varnothing 6 \mathrm{~mm}$	kg	17	24	31	38
	enter door 60×10	pcs	1	1	1	1
\%. ¢\%.	G.I. pipes 1/2"	M	2.4	2.4	3.0	3.0

-1
(s)

 precast concrete slabs $1: 2: 3$ reinforced $\varnothing 6 \mathrm{~mm}$ ，d $=15$ crosswise

MEASUREMENTS／DIMENSIONS IN CM

	Volume of tank			
	$2 \mathrm{M}^{3}$	$3 \mathrm{M}^{3}$	$4 \mathrm{M}^{3}$	$5 \mathrm{M}^{3}$
A	210	280	300	355
B	200	270	290	345
C	140	210	230	285
D	120	120	145	145
E	153	153	177	177

ఉごったs：

Note：
Sizes of inlet and outlet according to hydraulic calculations．

 PRECAST CONCRETE SL：

ตఎอง อําฬิ（B อర゙ต๙）
 STORAGE TANK（TYPE B）

ษช®っอ 2－50 ${ }^{3}$ Volume 2－5 m

			Volume of tank			
			$2 \mathrm{M}^{3}$	$3 \mathrm{M}^{3}$	$4 \mathrm{M}^{3}$	$5 M^{3}$
Eoeがo	cement \％	bags	21	25	28	35
O6 ody	line stones	pcs	600	700	850	900
	corner stones	pcs	100	100	120	120
W0\％od	unshaped stones	M^{3}	1.3	2.0	2.4	2.8
46	sand	M^{3}	3	3.5	3.8	4.5
	metal 20 mm	M^{3}	1.5	1.7	2.0	2.5
－ 60008	rebar 06 mm	kg	19	26	33	40

	Volume of tank			
	$6.5 \mathrm{M}^{3}$	$8 \mathrm{M}^{3}$	$10 \mathrm{M}^{3}$	$12 \mathrm{M}^{3}$
A	300	340	380	400
B	230	270	310	330
C	40	80	120	140
D	120	120	130	140
E	90	90	100	110

జerctex
Plan 1

ఆర(9)
Scale:

జికీఱ
Map S

Hucg.

Note:
Sizes of inlet and outlet according to hydraulic calculations.

 STORAGE TANK（TYPE A）

	दั𧰨c： Date：	April 1992		Enc Date：	$\begin{aligned} & \text { อิఙrs } \\ & \mathrm{By}: \end{aligned}$
；es：1：30	Drawn by：	Kumuduni	Amendments		
ఆช్ర： reet：	Designed by：	R．St．\＆H．Pf			

¢ฺి）ciజెఱేణูอ List of materials

			 Volume at tank			
			$6.5 \mathrm{~m}^{3}$	$8 \mathrm{~m}^{3}$	$10 \mathrm{~m}^{3}$	$12 \mathrm{~m}^{3}$
6®oris	cement owx	bags	68	73	81	89
Ex $\mathrm{c}^{\text {c }}$	sand	m^{3}	82	9	10	11
\cdots ¢	line stones	pcs	3500	3700	3900	4100
gct $0^{\text {c }}$	corner stones	pcs	220	230	240	250
แజ゙ర 以¢	unshaped stones	m^{3}	3.2	3.6	4.0	4.5
	metal $20 \mathrm{~m} . \mathrm{m}$ ．	m^{3}	4.1	4.8	5.6	6.3
	rebar 96 mm	kg	48	53	61	65
రెలెఱ๔（e）๔¢Tర	enter door 60×10	pcs	1	1	1	1
¢．\＆c．nc $1 / 2^{\prime \prime}$	G．I．pipes 1／2＂	m	3	3	3.5	3.5

$$
\begin{aligned}
& \text { SECTION Y - Y }
\end{aligned}
$$

X	Volume of tank			
	$6.5 \mathrm{M}^{3}$	$8 \mathrm{M}^{3}$	$10 \mathrm{M}^{3}$	$12 \mathrm{M}^{3}$
A	325	385	460	540
B	315	375	450	530
C	255	315	390	470

ผอ๙ห:

Note:

Sizes of inlet and outlet according to hydraulic calculations.

 STORAGE TANK (TYPE B)

> ఆ8@ァ๖ $6.5-12 \Theta{ }^{3}$
> Volume $6.5-12 \mathrm{~m}^{3}$

gio toses: No.	ξ \%) Date:	April 1992		$8 \geqslant 0$ Date:	$\begin{aligned} & 8685 \\ & \text { By: } \end{aligned}$
据c: $1: 25$	¢\& Drawn by:	Kumuduni	530esalum Amendments		
cie ex ఆn: Sheet:	Designed by:	R. St. \& H. Pf			

 nm or $\varnothing 10 \mathrm{~mm}$
力 8 mm or $\varnothing 10 \mathrm{~mm}$

 STORAGE TANK FERROCEMENT

 Plan No. $\text { T - } 05$	$\begin{aligned} & \text { \&ons: } \\ & \text { Date: } \end{aligned}$	April 1992		$\xi \rightarrow \infty$ Date:	$38 \mathfrak{m}$ By:
38® Scale:	Drawn by:	Kumuduni	4.ccosion Amendments		
Map Sheet:	Designed by:	H. Pf			

çu cician MATERIALS SEE DRAWING NO. T-06

1 U

?
©心.tics

Plastering: Outside wall:

1 coat 1:3 (2-3 c.m.) cover reinforcement/surface rough
2. coat 1:3 ($1-2 \mathrm{c} . \mathrm{m}$.) apply same day after 1. coat has sef/surface floated Inside wall (after 3 days)
1 coat 1:4 (2-3 c.m.) cover reinforcement / surface floated
2. coat cement paste (same day)

Roof

1. coat $1: 3$ ($3.4 \mathrm{c} . \mathrm{m}$.$) cover reinforcement / surface floated$
2. coat $1: 3$ ($2.3 \mathrm{c} . \mathrm{m}$.) apply inside after $7-14$ days/cover reinforcement

		$2 \mathrm{M}^{3}$	$4 \mathrm{M}^{3}$	$6 M^{3}$	$8 \mathrm{M}^{3}$	$10 \mathrm{M}^{3}$	$15 \mathrm{M}^{3}$
foundation \％\％		85	85	85	85	85	85
	erocnorge	8 mm	8 mm	8 mm	10 mm	10 mm	10 mm
	¢28 心\％	11	14	17	18	19	23
wall จืซోళ		165	175	180	195	210	225
		8 mm	8 mm	8 mm	10 mm	10 mm	10 mm
	¢ax wan total no	11	14	17	18	19	23
roof 10		90	120	140	150	160	185
	Oర心㇒子）	8 mm	8 mm	8 mm	10 mm	10 mm	10 mm
		9	12	15	16	17	21
		160	220	260	280	300	350
		8 mm	8 mm	8 mm	10 mm	10 mm	10 mm
		2	2	2	2	2	2
spacers 30\％0	6 mm	10 ml	15 ml	20 ml	25 ml	28 ml	35 ml

STORAGE TANK FERROCEMENT

	E30： Date：	April 1992		そうか Date：	3×3 By：
le：not to scale	Drawn by：	Kumuduni	23006がわう Amendments		
న（eి Sheet：	Wcreat mod Designed by：	H．Pf			

T）cజజఱొை List of materials

		$2 M^{3}$	$4 M^{3}$	$6 \mathrm{M}^{3}$	$8 M^{3}$	$10 \mathrm{M}^{3}$	$15 \mathrm{M}^{3}$
※ఆもびで cement	0200 （bags）	7	12	16	18	22	28
00 sand	$\left(\mathrm{m}^{3}\right)$	0.8	1.3	1.7	2.0	2.3	3.1
3／4＂ஜくび બC゙ netal	$\left(\mathrm{m}^{3}\right)$	0.3	0.5	0.7	0.9	1.0	1.3
Wum ω ；tones unshaped	$\left(\mathrm{m}^{3}\right)$	0.4	0.7	1.0	1.2	1.4	1.9
，lain wire 3.5 mm	（kg）	15	20	25	30	35	40
からめてい jinding wire 0.8 mm	（kg）	4	4.5	5	5.5	6	6.5
quct cus hicken wire mesh，$\varnothing=90 \mathrm{cn}$	$\left(\mathrm{m}^{2}\right)$	17	25	28	35	40	50
einforcement $\varnothing 6 \mathrm{~mm}$	（kg）	3	4	5	6	7	8
どくのでず® einforcement $\varnothing 8 \mathrm{~mm}$	（kg）	16	22	30	－	．	－
reinforcement $\varnothing 10 \mathrm{~mm}$	（kg）	－	－	－	50	56	73

SECTION A - A (VAR. A)

SECTION A - A (VAR B)

	 Tap att．to st．tank 2－5m²	ゅరెゅe wరృぁ Tap att．to st．tank 6．5－12 m^{2}
A	190	220
B	180	210
C	120	150

 MEASUREMENTS／DIMENSIONS IN CM

80ı かes बळf बestçe ev．over flow or wash out

ceanc comm： an No．	V－01	दั刃as： Date：	Aprll 1992		ĘOM Date：	$\begin{aligned} & \text { 厄ิबor } \\ & \text { By: } \end{aligned}$
30_{2} ：ale：	1：20	Drawn by：	Kumuduni	อกธcerion Amendments		
Tnce ox mi： 7p Sheet：	－	सucers zoe Designed by：	R．St．\＆H．Pt			

cอుs cజజటఁణః List of Materials

		Top attached to			
		st．t． $2.5 \mathrm{~m}^{3}$		st．t．6．5－12 m ${ }^{3}$	
		var．A	var．B	var．A	var．B
 	cement bags	5	4	6	5
D28	sand $\quad M^{3}$	0.5	0.4	0.7	0.6
$\begin{aligned} & 3 / 4^{\prime \prime} \\ & \text { ord } 0 \mathrm{C} \end{aligned}$	metal $\quad M^{3}$	0.9	0.9	1	1
ツが 心®゙	shaped sto．pcs	350	150	400	200
Exవm ce	rubble pos	900	900	900	900

 STAND POST 86"

 Plan No. $V=02$	दृvas: Date:	April 1992		$\begin{aligned} & \xi \pi n c s \\ & \text { Date: } \end{aligned}$
 Scale: $1: 20$	¢\% C2 Drawn by:	Kumuduni	esoccorabs Amendments	
Map Sheet:	Designed by:	R. St \& H. Pf		

sDus Cisefg List of materials

Eaprs	cement ¢\%juco bags		3.5
Ox	sand	m^{3}	0.3
	metal	m^{3}	0.45
shaped line stones pcs			1
	unshaped stones	pcs	200
	rebar $\varnothing 6 \mathrm{~mm}$	kg	4
	G.I. pipe 1"	cm	30

Step (1) cast 9 cm of concrete below the stand pipe.
Step (2) cast stand pipe pillar : concrete 1:2:3
Step (3) (The next following day) remove formwork and cast remaining part of s slab (12 cm) apply topping and cement paste

 STAND POST 88＂

$\begin{aligned} & \text { Bge qoan: } \quad V=03 \\ & \text { an No. } \end{aligned}$	ξ §๗s： Date：	April 1992		$\begin{aligned} & \varepsilon \because 2 \pi \\ & \text { Date: } \end{aligned}$	$\begin{gathered} 8 \mathrm{Bm} \\ \text { By: } \end{gathered}$
（eaters	Drawn by：	Kumuduni	Amendments		
Tcce ex c： ip Sheet：	Designed by：	H．Pf			

cอus clansx

 with out washout

	cement（6\％）${ }^{\text {a }}$	ต2m）${ }^{\text {cobags }}$	1.75
－	sand	m^{3}	0.15
シuct od	metal	m^{3}	0.20
2000	unshaped stones	pcs	150
$\begin{aligned} & 8.42 . \\ & 0 \omega u t \end{aligned}$	G．I．pipe	0．75＂	2.5 cm
2.42. 	G．I．elbow	0.75 ＂	1 pc
oforeo \％แน	fauchet socket		1 pc
ゆひゃ	tap	0.75	1 pc

[^0]: 1 The manual is confined only to the tapping of underground springs for GWSS. Water from streams and rivers is usually not safe for drinking. Such water sources require often sophisticated treatment plants which are expensive, difficult to maintain and rarely sustainable in community based GWSS.

[^1]: estci.

 Note:
 Type B is recommended for collection chambers by altering the measurements from $80 \times 60 \mathrm{~cm}$ to $45 \times 60 \mathrm{~cm}$
 The same size 45×60 can be used for pressure break chambers if no float or ball valve is needed.

