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Abstract

Background: Access to safe drinking-water is a fundamental requirement for good health and is also a human right. Global
access to safe drinking-water is monitored by WHO and UNICEF using as an indicator ‘‘use of an improved source,’’ which
does not account for water quality measurements. Our objectives were to determine whether water from ‘‘improved’’
sources is less likely to contain fecal contamination than ‘‘unimproved’’ sources and to assess the extent to which
contamination varies by source type and setting.

Methods and Findings: Studies in Chinese, English, French, Portuguese, and Spanish were identified from online databases,
including PubMed and Web of Science, and grey literature. Studies in low- and middle-income countries published between
1990 and August 2013 that assessed drinking-water for the presence of Escherichia coli or thermotolerant coliforms (TTC)
were included provided they associated results with a particular source type. In total 319 studies were included, reporting
on 96,737 water samples. The odds of contamination within a given study were considerably lower for ‘‘improved’’ sources
than ‘‘unimproved’’ sources (odds ratio [OR] = 0.15 [0.10–0.21], I2 = 80.3% [72.9–85.6]). However over a quarter of samples
from improved sources contained fecal contamination in 38% of 191 studies. Water sources in low-income countries
(OR = 2.37 [1.52–3.71]; p,0.001) and rural areas (OR = 2.37 [1.47–3.81] p,0.001) were more likely to be contaminated.
Studies rarely reported stored water quality or sanitary risks and few achieved robust random selection. Safety may be
overestimated due to infrequent water sampling and deterioration in quality prior to consumption.

Conclusion: Access to an ‘‘improved source’’ provides a measure of sanitary protection but does not ensure water is free of
fecal contamination nor is it consistent between source types or settings. International estimates therefore greatly overstate
use of safe drinking-water and do not fully reflect disparities in access. An enhanced monitoring strategy would combine
indicators of sanitary protection with measures of water quality.
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Introduction

The importance of water to human health and wellbeing is

encapsulated in the Human Right to Water and Sanitation, which

entitles everyone to ‘‘sufficient, safe, acceptable physically acces-

sible and affordable water for personal and domestic uses’’ [1], as

reaffirmed by the United Nations General Assembly and Human

Rights Council in 2010 [2]. Millennium Development Goals

(MDGs) Target 7c aims ‘‘to halve the proportion of the population

without sustainable access to safe drinking-water …’’ [3], a step

towards universal access. ‘‘Use of an improved source’’ was

adopted as an indicator for monitoring access to safe drinking-

water globally (Table 1) and relies on national censuses and

nationally representative household surveys as the primary sources

of data.

The Joint Monitoring Programme for Water Supply and

Sanitation (JMP) of WHO/UNICEF categorizes a drinking-water

source type as improved if ‘‘by nature of its construction or

through active intervention, [it] is protected from outside

contamination, in particular from contamination with faecal

matter’’ [4]. Improved source types include piped water into

dwelling, yard, or plot, standpipe, borehole, protected dug well or

spring, and rainwater. Unimproved source types are those that do

not protect water from outside contamination (unprotected wells,

unprotected springs, surface waters, and tanker trucks). While the

categorization reflects well-established principles of sanitary

protection, on announcing that the target had been met in 2010,

the JMP cautioned that the MDG indicator does not take water

quality measurements into account [5]. The indicator has been

criticized for not adequately reflecting safety [6–8], with some

estimates suggesting that reported access to safe water might be

overestimated by billions of people [9,10], by not accounting for

microbial water safety [8] or more fully accounting for sanitary

status [9].

Diseases related to contamination of drinking-water constitute a

major burden on public health. The principal risk to health is from

ingestion of water contaminated with feces containing pathogens

that cause infectious diseases such as cholera and other diarrheal

diseases, dysenteries, and enteric fevers [11,12]. The burden of

water-related disease varies according to context and is highest in

low-income settings where diarrhea remains a leading cause of

child deaths [13]. Systematic reviews of epidemiological evidence

from intervention studies [14–18], and especially outbreak

investigations [19,20], suggest drinking-water quality plays an

important role in fecal-oral transmission, though the magnitude of

the effect has been contested owing to a limited number of blinded

trials [21]. It is difficult to isolate the effects of one component of

the multiple and interrelated fecal-oral pathways, which are highly

context-specific.

WHO publishes widely recognized Guidelines for Drinking-

water Quality (GDWQ) (4th edition) that include criteria for

assessing health risks and setting targets for improving water

safety [12]. Direct measurement of pathogens is complex but

techniques for assessing fecal contamination using fecal

Table 1. Types of improved source and the estimated proportion of the global population using these as their primary source of
drinking-water.

Source Categorya Description

Global Population Using
Water Source in 2010b (%)

Urban Rural Total

Household or yard
connection

Piped water into dwelling, also called a household connection, is
defined as a water service pipe connected with in-house plumbing to
one or more taps. Piped water to yard/plot, also called a yard connection,
is defined as a piped water connection to a tap placed in the yard or plot
outside the dwelling.

80 29 54

Standpipe Public tap or standpipe is a public water point from which people can collect
water. A standpipe is also known as a public fountain or public tap. Public
standpipes can have one or more taps and are typically made of brickwork,
masonry, or concrete.

6 8 7

Borehole Tubewell or borehole is a deep hole that has been driven, bored, or drilled,
with the purpose of reaching groundwater supplies. Boreholes/tubewells are
constructed with casing, or pipes, which prevent the small diameter hole from
caving in and protects the water source from infiltration by runoff water.

8 30 18

Protected dug well Protected dug well is a dug well that is protected from runoff water by a
well lining or casing that is raised above ground level and a platform that
diverts spilled water away from the well. A protected dug well is also covered, so
that bird droppings and animals cannot fall into the well.

2c 10c 6c

Protected spring The spring is typically protected from runoff, bird droppings, and animals by
a ‘‘spring box,’’ which is constructed of brick, masonry, or concrete and is built
around the spring so that water flows directly out of the box into a pipe or cistern,
without being exposed to outside pollution.

,1c 3c 2c

Rainwater Rainwater refers to rain that is collected or harvested from surfaces (by roof or
ground catchment) and stored in a container, tank, or cistern until used.

,1 2 1

Source: UNICEF/WHO [5].
aHouseholds using bottled water as their primary source of water for drinking are generally considered to use an improved source if one of the above sources is used for
washing and cooking. The JMP estimates that 6% of the urban population and 1% of the rural population primarily use bottled water as their source of drinking-water.
bAn estimated 3% of the global population use surface waters and a further 8% use ‘‘other unimproved sources’’ such as tanker trucks, unprotected dug wells, and
unprotected springs.
cPublished estimates include do not distinguish protected and unprotected. In the absence of data we assumed half are protected.
doi:10.1371/journal.pmed.1001644.t001
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indicator bacteria (FIB) are well established and widely

applied. The WHO GDWQ recommend using E. coli, or

alternatively thermotolerant coliform (TTC), and new enzy-

matic methods have made quantification simpler, cheaper, and

more robust [22,23]. The WHO GDWQ recommend that E.

coli, or alternatively TTC, be used in assessing fecal contam-

ination of drinking-water [12]. The WHO guideline value for

E. coli (‘‘none detected in any 100-ml sample’’) [12] is reflected

in the standards of most OECD member states and low- and

middle-income countries (LMICs). The WHO GDWQ further

suggest the use of a risk classification to prioritize interventions

as higher levels of indicator organisms are generally indicative

of greater levels of fecal contamination. A commonly used risk

classification is based on the number of indicator organisms in

a 100 ml sample, which includes: ,1, ‘‘very low risk’’; 1–10,

‘‘low risk’’; 10–100, ‘‘medium risk’’; .100, ‘‘high risk’’ or

‘‘very high risk’’ [24,25]. However FIB are imperfect and their

level does not necessarily equate to risk [26]; since quality

varies both temporally and spatially, occasional sampling may

not accurately reflect actual exposure.

A complementary approach in safety assessment is the

identification of hazards and preventative risk management

measures through ‘‘sanitary inspection’’ of a water source and

its surroundings [24,27]. The improved source indicator is in

effect a very simplified form of sanitary inspection. Like FIB,

sanitary inspections have long been a tool in assessing

drinking-water safety. In 1904, Prescott and Winslow stated,

‘‘[t]he first attempt of the expert called in to pronounce upon

the character of a potable water should be to make a thorough

sanitary inspection…’’ [28]. Standardized forms can be used to

assess sanitary risk and derive a summary measure, the sanitary

risk score. These forms typically include questions about the

integrity of protective elements, such as fencing or well covers,

and the proximity of hazards such as latrines; forms are

available for different types of water source. Like water quality,

some sanitary risk factors may vary spatially and temporally.

The approach can be combined with microbiological analysis,

either to yield a risk cross-tabulation [24,25] or as a part of a

more detailed Water Safety Plan [29].

In January 2012, WHO and UNICEF established working

groups to develop targets and indicators for enhanced global

monitoring of drinking-water, sanitation, and hygiene post-

2015. The water working group proposed to continue using the

improved water source classification as part of a revised set of

indicators for assessing progressive improvements in service

[30]. This review was commissioned to assist the group in

evaluating the evidence linking improved source types and

health-related indicators of water quality. The following

specific questions were considered in order to determine the

potential and limits of classification by source type in assessing

safety in future global reporting: (i) Is water from improved

sources less likely to exceed health-based guidelines for

microbial water quality than water from unimproved sources?

(ii) To what extent does microbial contamination vary between

source types, between countries, and between rural and urban

areas? (iii) Are some types of water source associated with

higher risk scores as assessed by sanitary inspection?

Methods

We conducted a systematic review of studies of fecal contam-

ination of drinking-water in LMICs in adherence with PRISMA

guidelines (Text S1) [31]. The protocol for the review is described

in Protocol S1.

Search Strategy
Studies were identified from both peer-reviewed and grey

literature. To identify peer-reviewed literature, the topic ‘‘water

quality’’ was combined with terms to restrict the search to

drinking-water and either a measure of microbial water quality

(e.g., ‘‘coli’’) or sanitary risk (e.g., ‘‘sanitary inspection’’). We

further restricted the search to LMICs using a list of country

names based on the MDG regions [32]. Online databases were

searched including PubMed, Web of Science, and the Global

Health Library. Grey literature was sourced from a variety of sites

including those used in previous drinking-water–related reviews

[33–35]. Translated search terms (Chinese, French, Portuguese,

and Spanish) were used to identify additional studies. An email

requesting submissions of relevant studies was distributed to water

sector professional networks. We searched bibliographies of

included studies and contacted authors where full texts could not

be obtained through other means. Searches were conducted

between 7th January and 1st August 2013.

Eligibility and Selection
Studies were included in the review provided they: reported on

water quality, at either the point of collection or consumption,

from sources used for drinking that would not be classified as

surface waters by the JMP; contained extractable data on TTC or

E. coli with sample volumes not less than 10 ml; were published

between January 1990 (the baseline year for MDG targets) and

August 2013; included results from at least ten separate water

samples from different water sources of a given type or, in the case

of piped systems, individual taps, and in the case of packaged

waters, brands; reported data from LMICs as defined by the

MDG regions [32] (thereby excluding 55 high-income countries,

comprising 18.1% of the global population in 2010 [36]); were

published in languages spoken by at least one author (Chinese,

English, French, Portuguese, or Spanish); and included sufficient

detail about the water sources and associated results with a water

source with sufficient detail to be categorized (refer to Figure 1 for

details). Other indicators such as coliphage and direct pathogen

detection are not as widely used and are not included in this review

[37]. We did not include studies that only assessed surface waters

as these are generally considered unfit for drinking. We included

bottled water and sachet water that do not form part of the JMP

improved source classification (which is concerned with the

household’s primary source of water for drinking, cooking, and

personal hygiene [38]) but are nonetheless important sources of

drinking-water in many countries.

Independent primary screening of English language titles and

abstracts for studies was conducted by two authors (RB and RC). If

any reviewer selected a study, we referred to the full text. Data

from eligible studies were extracted into a standardized spread-

sheet and 10% of the English language texts were subjected to

independent quality control by a second author (RB and RC).

Screening and extraction of data in other languages was

conducted by one author (RB or HY).

Data Extraction and Matching
Where possible we extracted or calculated the following

information for each type of water source in the studies: (i) total

number of samples and proportion containing E. coli or TTC; (ii)

proportion of samples within microbial risk categories (,1 or not

detected, 1–10, 10–100, and .100 E. coli or TTC per 100 ml); (iii)

geometric mean, mean, or median levels of E. coli or TTC; and (iv)

risk categories according to the sanitary inspection (‘‘low,’’

‘‘medium,’’ ‘‘high,’’ and ‘‘very high’’ risk) as reported in the

studies. For intervention studies (other than the provision of an

Fecal Contamination of Drinking-Water
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improved source, for example the protection of unprotected

springs), estimates could be based on either the baseline or control

group; when both were available we used whichever had the

largest sample size. For studies reporting both E. coli and TTC, we

used only the E. coli results. Where repeated measures were taken

at the same source and data permitted we extracted the lowest

compliance level (e.g., wet season data) with WHO Guideline

values as well as the overall proportion of samples containing FIB.

We identified countries as ‘‘low,’’ ‘‘lower middle,’’ ‘‘upper

middle,’’ and ‘‘high’’ income using the 2013 World Bank

classification [39]. We recorded whether studies took place during

or shortly after emergencies or natural disasters and if they were in

non-household settings such as schools and health facilities. We

identified additional study characteristics expected to influence

water quality, including the setting (urban/rural), season (wet/dry

or period of sampling), and study design [34].

Each type of water source in a given study was classified as

improved or unimproved and matched to a specific water source

type following the classification used in household surveys

including the Demographic and Health Surveys [38]. We

recorded whether samples had been taken directly from the water

source or after storage, for example in the home. Where the

appropriate match could not be determined, our approach

differed depending on the type of source. We grouped ground-

water sources from studies that did not distinguish between

protected and unprotected (unclassified dug well, unclassified

spring) and we created groups for studies of other sources such as

bottled and sachet water. Further information about the matching

is available in Figure 1.

Study Quality and Bias
Studies were rated for quality on the basis of the criteria

summarized in Table 2. A quality score between 0 and 13 for each

study was determined on the basis of the number of affirmative

responses. We also categorized studies on the basis of anticipated

susceptibility to bias in estimating the compliance to health-based

Figure 1. Matching drinking-water source types to the classification used by the Joint Monitoring Programme.
doi:10.1371/journal.pmed.1001644.g001
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guidelines and the extent of microbial contamination; our

categories were: case-control or cohort, intervention, diagnostic

study, cross-sectional survey, and longitudinal survey. Any study of

at least 6 months duration and more than two samples at each

water point was categorized as longitudinal. We identified studies

where authors indicated whether selection was intended to be

representative or selection had been randomized.

Analysis
Because of the extent of heterogeneity between studies, we chose

to plot cumulative density functions (CDFs) of the proportion of

samples with detected (.1 per 100 ml) and high (.100 per

100 ml) FIB in each study to compare water source types between

studies. This approach has been used in a systematic review of

prevalence of schizophrenia [40]. CDFs are used to qualitatively

assess the proportion of studies reporting frequent and high levels

of microbial contamination. Measures of central tendency from

studies were not included in the meta-analysis because of limited

reporting of measures of dispersion, inadequate explanation of the

handling of censored data, and the difficulty in reconciling diverse

reported measures of central tendency (e.g., geometric versus

arithmetic mean) [41].

Random effects meta-regression was used to investigate

risk factors and settings where fecal contamination is

most common and other possible explanations for the

observed heterogeneity between studies [42]. A logit transfor-

mation is recommended for the analysis of proportions [43]

and was applied to both the proportion of samples with

detectable (.1 per 100 ml) and high (.100 per 100 ml) levels

of FIB. The metareg function in Stata was used after a continuity

correction of 60.5 where the proportion of samples positive

was zero or one [44], and we estimated the within study

variance for each proportion as the reciprocal of the binomial

variance [45]. Subgroup analysis included variables defined a

priori (including water source type, rural versus urban, and

income-level) and defined a posteriori (for example if piped

water had been treated prior to distribution). We separately

evaluated piped and other improved sources for those variables

reaching significance at the 5% level in bivariate analysis for

all source types.

Studies that included both improved and unimproved sources

were then combined using meta-analysis with the odds ratio (OR)

as the effect measure. We calculated a pooled estimate of the

protective effect of an improved source and corresponding

confidence intervals using the metan function in Stata. We then

assessed the influence of small study bias by the funnel plot method

and performed an Egger’s test using a normal likelihood

approximation. The extent of heterogeneity in protective effect

was determined using Higgins I2 and corresponding confidence

intervals were calculated [42]. Calculations were performed in

Stata 13SE.

Results

Search Results
As shown in Figure 2, in total, 6,586 reports were identified

through database searches. A further 1,274 reports were

identified from grey literature and correspondence with

experts. Most studies were excluded because they did not test

water that was clearly used for drinking, did not associate

results with a water source type, or did not include enough

different water sources or in the case of packaged water,

brands. Studies often did not provide an adequate description

of the water sources to allow them to be matched to the JMP

source categories; this limitation was particularly the case for

ground water sources. For example, several studies reported

results for ‘‘hand pumps’’ (a description of the technology

above ground) but did not provide details about well

construction. Although these may often be boreholes, hand

pump conversions are also applied to dug wells. Other studies

simply described water sources as ‘‘wells’’ or ‘‘springs.’’ Some

studies provided details that are not captured in the JMP

classification, such as whether water from a piped supply had

been treated. Full texts could not be obtained for 99 potentially

relevant reports, many of which were conference presentations

and most of which were identified from bibliographies. The

Table 2. Quality criteria used to assess studies of microbial water quality.

Criterion Question

Selection described Do the authors describe how the water samples were chosen, including how either the types of water source or their users were
selected?

Selection representative Did the authors detail an approach designed to provide representative picture water quality in a given area?

Selection randomized Was sampling randomized over a given study area or population?

Region described Does the study report the geographic region within the country where it was conducted?

Season reported Were the seasons or months of sampling reported?

Quality control Were quality control procedures specified or referred to?

Method described Are well-defined and appropriate methods of microbial analysis described or referenced?

Point of sampling Was the point at which water was sampled well defined? (For example whether the water was collected from within a household
storage container or directly from a water source)

Handling described Are sample handling procedures described, including sample collection, transport method, and duration?

Handling minimum criteria Does sample handling and processing meet the following criteria: transport on ice or between 2–8uC, analysis within 6 hours of
collection, and specified incubation temperature?

Accredited laboratory Was the microbial analysis conducted in an accredited laboratory setting?

Trained technician Do the authors state whether trained technicians conducted the water quality assessments or the analyses were undertaken by
laboratory technicians?

External review Was the study subject to peer review or external review prior to publication?

doi:10.1371/journal.pmed.1001644.t002

Fecal Contamination of Drinking-Water

PLOS Medicine | www.plosmedicine.org 5 May 2014 | Volume 11 | Issue 5 | e1001644



remaining 310 reports [6,24,46–353] were incorporated in our

review and provide information on 96,737 water samples. The

total number of studies is higher (319) due to a small number of

multi-country reports. On average each study provides

information on 1.7 water source types, resulting in a database

with 555 datasets (Dataset S1).

Figure 2. Flowchart for a review of safety of sources of drinking-water.
doi:10.1371/journal.pmed.1001644.g002
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Study Characteristics
Characteristics of included studies are summarized in

Table 3. The review is dominated by cross-sectional studies

(n = 241, 75%) with fewer longitudinal surveys (n = 39, 12%).

Authors report selecting sources or households at random in a

minority of studies (n = 68, 21%); most of these studies selected

sources randomly within a region or community rather than at

national level. The main exceptions were the Rapid Assess-

ment of Drinking-Water Quality (RADWQ) studies commis-

sioned by WHO and UNICEF, of which five have been

published [64,65,164,281,322] and a repeated cross-sectional

study in Peru for which only the total coliform results have

previously been reported but for which we were able to secure

E. coli data [227].

Study quality varied greatly spanning from a quality score of

1 to 12 and with an interquartile range of 5 to 8 (Figure S1).

Whereas most studies described the analytical method used to

detect E. coli or TTC (80%), how water sources were selected

(67%), and the setting in which the study took place (86%),

fewer specified quality control procedures (15%), met the basic

sample handling criteria (25%), used trained technicians to

conduct the water quality tests (15%), or arranged testing in an

accredited laboratory (12%) (Figure S2). Most studies were

from sub-Saharan Africa, southern Asia, or Latin America and

the Caribbean (Figure 3). The majority of included studies

investigated water quality at the source. Studies reporting on

the quality of water stored in households by provenance were

less common (n = 49), and few of these compare quality of

stored water with that of the associated source (n = 26). Several

studies took place during or after emergencies [97,201] and

natural hazards, including cyclones [235], floods [78,208],

droughts [341], and tsunamis [130,147,331]. Non-household

settings such as schools and health facilities were addressed in a

small number of studies (n = 17). Few studies separately report

water quality information from slum or peri-urban settings

(n = 7).

Qualitative Synthesis
In Figures S3 and S4 levels of microbial contamination are

shown using the FIB level classification (,1, 1–10, 10–100, and .

100 FIB per 100 ml), grouped by type of improved water source.

These results are broadly in agreement with a comparison using

measures of central tendency (Figure S5) and show great

variability in the likelihood and extent of contamination between

studies and source types.

Large studies with random sampling demonstrate marked

differences in water quality between countries; for example less

than 0.01% of samples from utility piped supplies in Jordan [281]

were found to contain TTC compared with 9% to 23% of utility

piped supplies in the other four RADWQ countries

[64,65,164,322]. Only one national randomized study differenti-

ated between rural and urban areas; the proportion of samples

from piped supplies containing E. coli was found to be substantially

higher in rural (61%, n = 101) than urban (37%, n = 1470) areas in

Peru [227].

In comparison to microbial testing, sanitary inspections are

less widely practiced or data are rarely published. Sanitary

inspection procedures vary considerably and are usually

adapted to the local context; of the 44 studies reporting

sanitary inspections only 12 used standardized WHO forms. In

Figure S6 the sanitary risk levels as reported in nine studies are

compared with the proportion of samples containing FIB and

suggest that there is no strong association between these two

measures.

Between Studies Analysis: CDF and Meta-regression
The number of studies reporting high proportions of samples

contaminated or high levels of FIB is lower for improved sources

as can be seen in Figure S7. Yet, in 38% of 191 studies reporting

the quality of improved sources, at least a quarter of samples

exceeded recommended levels of FIB. Figure S8 shows CDFs by

source type with similar patterns to those from the FIB level

classification.

Results of the meta-regression are shown in Table 4. We find

that country income-level is a significant determinant of water

quality and the odds of contamination are 2.37 times (95% CI

1.52–3.72 [p = 0.001]; Table 4) higher in low-income countries

compared with wealthier countries. However this result is not

significant when separately considering piped and other improved

sources (Tables S1 and S2).

Meta-regression showed a substantial difference in the propor-

tion of samples containing FIB between urban and rural areas

(OR = 2.37 [95% CI 1.47–3.81], p,0.001). There is weak

evidence to suggest that piped supplies are more likely to be

contaminated in rural areas (OR = 2.4 [95% CI 0.98–5.92],

p = 0.054; Table S1), but no evidence of differences for all other

improved source types (OR = 1.19 [95% CI 0.52–2.72], p = 0.67;

Table S2).

Protection of groundwater (OR = 0.26 [95% CI 0.11–0.60];

p = 0.002; Table 3) and treatment of piped water (OR = 0.07 [95%

CI 0.02–0.27], p,0.001; Table 3) were both strongly related to

better water quality. Contamination of stored water was more

likely than water at the source (OR = 2.09 [95% CI 1.16–3.78],

p = 0.015; Table 3), including for piped supplies (OR = 2.35 [95%

CI 1.08–5.12], p = 0.032; Table S1).

Within Studies Analysis: Meta-analysis
Figure 4 is a forest plot showing the ORs of contamination

for improved sources compared to unimproved sources from

eligible studies. Meta-analysis of randomized and non-ran-

domized studies showed that improved sources are less likely to

be contaminated (pooled OR = 0.15 [0.10–0.21]; Figure 4); the

protective effect was found to be greater in randomized studies

and none of the randomized studies found contamination to be

more frequent in improved sources. Heterogeneity was

relatively high (I2 = 80.3% [95% CI 72.9–85.6) indicating that

the protective effect varies considerably between settings. The

OR for a small number of studies was greater than one,

suggesting that in some settings improved sources may not

always be less likely to contain FIB than the unimproved

alternative.

Assessment of Bias
Egger’s test found no evidence of small study effects for the

meta-analysis of improved versus unimproved sources

(p = 0.64; Figure S9). Meta-regression did not detect evidence

of bias due to study design, lack of randomization, study

quality, or season (‘‘wet’’ or ‘‘dry’’). As expected, we find that

levels of FIB (risk classification or measures of central

tendency) were more likely to be reported in studies where

water was more contaminated with FIB (Tables 4, S1, and S2)

and therefore may constrain comparisons between studies.

Publication year was also related to the proportion of samples

containing FIB (OR = 0.96 [95% CI 0.93–1.00]; p = 0.029;

Table 4), but this was not significant when separately

considering piped and other improved sources (Tables S1

and S2). Studies testing the same sources in different seasons

report considerable variation in microbial water quality (Table

S3).
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Table 3. Characteristics of included studies.

Characteristic Studies Datasets Samples

Number (%) Number (%) Number (%)

Setting

Urban 146 (46) 227 (41) 30,038 (31)

Rural 130 (41) 243 (44) 34,850 (36)

Both urban and rural 41 (13) 83 (15) 31,767 (33)

Unclassified setting 2 (1) 2 (0) 82 (0)

Emergencies 13 (4) 26 (5) 2,897 (3)

Non-household 17 (5) 21 (4) 2,121 (2)

Point of sampling

Stored water 50 (15) 74 (13) 19,965 (21)

Directly from source 293 (92) 481 (87) 76,772 (79)

Water supply

Improved 209 (65) 273 (49) 56, 268 (58)

Piped 118 (37) 119 (21) 32,348 (33)

Borehole 83 (26) 83 (15) 11,452 (12)

Protected dug well 36 (11) 36 (6) 8,697 (9)

Protected spring 11 (3) 11 (2) 978 (1)

Rainwater 25 (8) 25 (5) 2,793 (3)

Unimproved 62 (19) 71 (13) 5,594 (6)

Unprotected dug well 49 (15) 49 (9) 4,577 (5)

Unprotected spring 16 (5) 16 (3) 810 (1)

Tanker truck 6 (2) 6 (1) 207 (0)

Unclassified 167 (53) 213 (38) 35,087 (36)

Sachet 15 (5) 15 (3) 1,305 (1)

Bottled 35 (11) 35 (6) 2,339 (2)

Dug well 49 (15) 49 (9) 4,577 (5)

Spring 16 (5) 16 (3) 810 (1)

Design

Randomized 68 (21) 131 (24) 31,210 (32)

Representative 74 (23) 148 (27) 37,614 (39)

Cohort or case control 5 (2) 15 (3) 4,114 (4)

Intervention 22 (7) 47 (8) 9,799 (10)

Cross-sectional survey 241 (75) 404 (73) 48,559 (50)

Longitudinal survey 39 (12) 66 (12) 32,302 (33)

Diagnostic 12 (4) 23 (4) 1,963 (2)

Parameter

E. coli 152 (48) 270 (49) 32,298 (33)

TTC only 167 (52) 285 (51) 64,439 (67)

Language

English 276 (86) 502 (90) 81,349 (84)

Spanish 6 (2) 8 (1) 3,024 (3)

Portuguese 24 (8) 29 (5) 9,146 (9)

French 4 (1) 5 (1) 187 (0)

Chinese 9 (3) 11 (2) 3,031 (3)

Reporting

Presence/absence of FIB 287 (90) 499 (90) 90,056 (93)

Microbial risk classification 90 (28) 165 (30) 23,953 (25)

Mean FIB 80 (25) 136 (25) 15,530 (16)

Geometric mean FIB 34 (11) 68 (12) 11,797 (12)
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Discussion

Safety of Improved Sources
We demonstrate that water from improved sources is less likely

to contain FIB than unimproved sources. Using meta-analysis we

compare water from unimproved sources and improved sources

within the same study and found improved sources were less likely

to contain FIB (OR = 0.15 [95% CI 0.10–0.21]) (Figure 4), with

the greatest protective effects in studies where selection of water

sources was randomized. Comparison between studies of im-

proved versus unimproved sources yielded an OR of 0.14 (95% CI

0.08–0.25) for the presence of FIB and 0.13 (95% CI 0.05–0.34)

Table 3. Cont.

Characteristic Studies Datasets Samples

Number (%) Number (%) Number (%)

Range of FIB 74 (23) 108 (19) 9,407 (10)

Standard deviation of FIB 21 (7) 38 (7) 4,417 (5)

Sanitary risk 44 (14) 82 (15) 15,808 (16)

WHO sanitary risk 12 (4) 31 (6) 9,160 (9)

Sanitary risk classification 17 (5) 44 (8) 10,667 (11)

Sample Sizea

Small (n = 10–30) NA 192 (35) 3,711 (4)

Medium (n = 31–100) NA 187 (34) 11,615 (12)

Large (n = 101–6,021) NA 176 (32) 81,411 (84)

Qualityb

Low (1–5) 113 (36) 199 (36) 27,892 (29)

Medium (6–7) 94 (29) 142 (26) 16,980 (17)

High (8–13) 112 (35) 214 (39) 51,865 (54)

Total 319 (100) 555 (100) 96,737 (100)

aTerciles by datasets.
bTerciles by study.
NA, not applicable.
doi:10.1371/journal.pmed.1001644.t003

108

60

92
LAC

11
EA

SA 17
SEA

SSA

4
NA

3
O

23

WA

1 CCA
1

5-9 studies
3-4 studies
2 studies
1 study

Studies per country

MDG Regions
Number of studies n

20+ studies
10-20 studies

High income 
countries 

0 studies

Figure 3. Map of study locations.
doi:10.1371/journal.pmed.1001644.g003
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for samples exceeding 100 FIB per 100 ml (Table 4). Cumulative

density plots show markedly lower contamination for improved

sources relative to unimproved sources.

While improved sources clearly offer a greater degree of

protection compared to unimproved sources, they are not all nor

consistently safe [354]. In particular, protected dug wells were

rarely free of fecal contamination and it is not uncommon for these

sources to contain high levels of FIB. High levels of contamination

were occasionally reported for boreholes and piped water, which

are typically perceived as high quality and lower risk. Risk factors

for microbial contamination of piped supplies include intermit-

tency [198] and inadequate chlorination [20,355]. For boreholes

and dug wells, the reasons for fecal contamination can be more

difficult to ascertain owing to the possibility of aquifer contami-

nation and/or inadequate sanitary completion. In many cases

contamination is associated with poor hygiene and inadequate

sanitation, but specific risks can be readily identified through

sanitary inspection of the water source and its surroundings and

may in part explain the heterogeneity in FIB concentrations

observed for a given source type.

Studies included in this review show great variability in water

quality for water sources of a given type, suggesting considerable

scope for reducing exposure to fecal contamination through

systematic management of water safety. Microbial water quality

displays substantial heterogeneity between studies and we found a

high I2 when comparing improved and unimproved sources from

the same study (I2 = 80.3% [72.9–85.6]; Figure 4).

Across all studies, we find a higher risk of contamination in rural

areas compared to urban areas (OR = 2.37 [1.47–3.81], p,0.001;

Table 4) and a higher risk of contamination in low-income

countries (OR = 2.37 [1.52–3.71], p,0.001; Table 4). Higher risk

in rural areas is consistent with a recent multi-country study of

over 25,000 hand pumps, which found greater risk of non-

functioning water sources in areas distant from district centers

[356].

There is some evidence to suggest that overall water quality has

gradually improved over time. Publication year was associated

with the proportion of samples containing FIB (OR 0.96 [0.93–

1.00], p = 0.023; Table 4); this may reflect a progressive trend

towards greater use of source types associated with less

contamination and potentially a lessening of population-level

exposure.

We found only limited published data on sanitary risk,

suggesting that sanitary risk inspection techniques are not

widely used and/or reported, despite being well-established in

national and international drinking-water guidelines [12].

Studies report sanitary risks in some sources that are not

found to contain detectable FIB, indicating that infrequent

monitoring does not provide assurance of water safety.

Conversely, low sanitary risk scores are reported for water

sources that contain FIB, indicating that sanitary inspections

alone do not capture water safety fully. Although individual

studies report different levels of sanitary risk, the data are too

few to draw general conclusions. Moreover, the use of different

questions for each source type and their equal weighting limits

the comparability of sanitary risk scores. While a simple

prevalence of factor scoring is unlikely to be appropriate in

more complex systems, there has been progress in developing

Table 4. Between studies meta-regression.

Variables Proportion of Samples .1 FIB per 100 ml Proportion of Samples .100 FIB per 100 ml

Obs. OR [95% CI] p-Value Obs. OR [95% CI] p-Value

Source type

Improved vs. unimproved 291 0.14 [0.08–0.25] ,0.001 87 0.13 [0.05–0.33] ,0.001

Piped vs. other improved 239 0.53 [0.32–0.89] 0.017 68 0.47 [0.18–1.20] 0.11

Protected vs. unprotected groundwater 90 0.26 [0.11–0.60] 0.002 31 0.37 [0.09–1.52] 0.16

Treated piped vs. untreated pipeda 69 0.07 [0.02–0.27] ,0.001 18 0.10 [0.01–0.72] 0.025

Stored vs. source 474 2.09 [1.16–3.78] 0.015 140 1.85 [0.68–5.04] 0.23

Setting

Low-income vs. other 414 2.37 [1.52–3.71] ,0.001 122 1.30 [0.59–2.86] 0.52

Rural vs. urban 344 2.37 [1.47–3.81] ,0.001 96 1.18 [0.49–2.83] 0.71

Study characteristics

Thermotolerant vs. E. coli 417 1.08 [0.70–1.67] 0.72 122 0.99 [0.45–2.19] 0.98

Publication year 415 0.96 [0.93–1.00] 0.029 122 0.96 [0.91–1.02] 0.16

Random vs. non-random selection 417 0.92 [0.53–1.57] 0.75 122 0.60 [0.25–1.44] 0.25

High quality vs. lower qualityb 417 0.90 [0.54–1.49] 0.68 122 0.51 [0.21–1.23] 0.13

Longitudinal vs. cross-sectional 372 1.00 [0.58–1.73] 0.99 116 1.05 [0.40–2.73] 0.93

Wet vs. dry 51 0.99 [0.32–3.10] 0.99 22 0.93 [0.09–9.34] 0.95

Reporting format

Measure of central tendency 417 2.31 [1.45–3.69] ,0.001 122 1.22 [0.55–2.68] 0.62

Microbial risk classification 417 2.30 [1.45–3.67] ,0.001 — — —

With the exception of stored versus source, we restricted the analysis to source water samples. We excluded emergencies from the meta-regression.
aPost hoc analysis.
bTop tercile of studies versus bottom two terciles.
Obs.,number of observations.
doi:10.1371/journal.pmed.1001644.t004
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scoring for quality of water safety plans and higher scoring

utilities have been linked to both improved water quality and

health outcomes [357].

Limitations of the Review
At the outcome level, our principal analyses are based on the

proportion of samples detecting FIB rather than compliance to

health guidelines over the course of a year. These prevalence

measures overestimate compliance to health guidelines and

national standards that require minimum sampling frequen-

cies. Furthermore, where the sample volume is less than the

recommended 100 ml [12], contamination is less likely to be

detected and will be detected less frequently.

At the study level, our review was limited by infrequent

reporting of a consistent measure of central tendency (or of

individual sample data), sanitary risk inspections, and stored water

quality. In analysis, we combine studies that used diverse sample

handling and microbiological analytical methods and these factors

may account for some of the variability in reported water quality.

The majority of the included studies were cross-sectional and do

not provide information on temporal variability in water quality.

Few studies achieved robust random selection of water sources,

and few received high scores for study quality (14% with .9 out of

13; Figure S1) with description of quality control procedures,

meeting handling criteria, and statement of season(s) of sampling

most frequently omitted quality factors. Many studies, particularly

NOTE: Weights are from random effects analysis

.

.

Overall  (I−squared = 80.3%, p < 0.001)
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Pathak 2005 [268]
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Figure 4. Forest plot of the odds of fecal contamination for improved and unimproved sources.
doi:10.1371/journal.pmed.1001644.g004

Fecal Contamination of Drinking-Water

PLOS Medicine | www.plosmedicine.org 11 May 2014 | Volume 11 | Issue 5 | e1001644



of groundwaters, were excluded as we could not match water

source types or determine whether they were ‘‘improved.’’

At the review level, we may not have identified all studies that

meet the inclusion criteria. To capture additional studies would

have required the screening of tens of thousands of records, as we

were unable to identify more specific search terms. Two sources of

water quality information that could be used in future studies and

monitoring: regulatory surveillance and utility quality control data

are likely to be extensive and not well represented as they may not

be published and publicly available. Publicly available data from

these sources rarely matched our inclusion criteria, usually because

of failure to report sample sizes or associate water quality with

source type. We identified few studies in languages other than

English despite conducting searches in four other languages, and

several regions are underrepresented (Figure 3) including Cauca-

sus and Central Asia and Oceania for which studies may be

available in other languages. Since few studies separately report

water quality in slums, we combined studies of slum and peri-

urban populations with those taking place in formal urban areas

and we were therefore unable to investigate intra-urban disparities

[7]. There may be a small number of errors in the database; in the

10% of English language studies independent extraction ,0.5%

errors were identified.

There are two sources of bias that will tend to cause

overestimation of the safety of improved sources. Firstly, for many

source types, water (including unreliable piped systems, public

standpipes, and wells) is collected at the source, carried to, and

stored in the household—affording multiple opportunities for

contamination—such that final water quality is often worse than in

the associated source [34]. Few studies identified the source type of

origin of stored water; those that did supported the suggestion that

stored water is more frequently contaminated and contaminated at

higher levels. Data interpretation is confounded because samples

are not paired [204] or are temporally displaced. Despite the

potential to improve matters, evidence for the impact of household

water treatment on stored water quality is inconsistent [295,358].

Secondly, most studies were cross-sectional. One-off or infrequent

sampling overestimates safety by missing seasonal [359,360] or

sporadic contamination and longitudinal studies suggest seasonal

effects can be substantial (Table S3).

Monitoring Implications: Improving on Improved
There is a widely perceived hierarchy for water source

desirability, typically with piped-to-household-tap as the ideal.

Such general hierarchies combine many aspects of water service

and their value, including quantity, affordability, accessibility, and

reliability or continuity of service as well as safety [361]. It has

been argued that a more graduated approach to monitoring than

the ‘‘improved’’/‘‘unimproved’’ dichotomy is required [24,362].

These concepts were reflected in initial JMP working group

proposals that called for the monitoring of ‘‘basic’’ and ‘‘interme-

diate’’ service levels representing improvements in quality,

continuity of supply, and accessibility [30]. Such monitoring could

contribute to assessing progressive realization of the Human Right

to Water and Sanitation [363] and to encourage improvements in

service delivery, including improvements within water source-type

categories.

A variety of indicators could be used to improve global estimates

of water safety. Account of safety could be enhanced by ranking or

scoring improved source types according to the proportion of

sources showing fecal contamination (in descending order): piped

(treated), boreholes, protected springs, rainwater, piped (untreat-

ed), and protected dug wells. Although based on a posteriori analysis,

we find that untreated piped supplies are much more likely to be

contaminated than treated piped supplies (OR = 0.07 [95% CI

0.02–0.27], p,0.001; Table 4) and may usefully be considered

separately. This ranking could be refined as more data become

available but may have unintended consequences such as

disincentivising improvements within each source type and could

discourage the use of some source types in regions where these

may in fact provide comparatively safe water. We find that bottled

and sachet water are typically high quality, but their environmen-

tal sustainability has been questioned [318]. They are excluded

from global progress efforts not for reasons of quality but because

they provide insufficient quantity for domestic uses, such as

cooking and hygiene, other than direct consumption.

Adjustment of the improved source indicator for country-

specific source-type compliance with microbial water quality

guidelines would capture the substantial heterogeneity both

between and within countries, highlighting disparities in the use

of safe drinking-water [364]. It would provide a more robust and

consistent means of assessing safety than the use of source-type

classifications alone and would enable improvements in quality to

be reflected in monitoring. This review indicates that such an

adjustment would have a large (downward) impact on interna-

tional estimates of the number of people using safe drinking-water,

in agreement with previous estimates based on five studies [8,9].

Prevalent FIB are imperfect indices of water safety [26] and

health risk. They are known to be more sensitive to chlorine than

some important waterborne pathogens such as cryptosporidium

[12], and can persist or multiply in some tropical waters [365].

These factors and the fact of temporal variability in water quality

suggest that it would be strongly preferable to combine periodic

measurement of water quality with assessment of sanitary status

through sanitary inspection or water safety plans [29] in assessing

water safety. These approaches can serve to highlight the

condition, operation, and maintenance of water sources and

provide a more complete picture than access to infrastructure

alone. Such approaches would benefit from standardization to

ensure comparability. However, adjustment for the proportion of

samples containing FIB would not account for all hazards to

health, including the two major chemical hazards: fluoride

[366,367] and arsenic [368]. The JMP has outlined an approach

that could be taken that combines a hierarchy of measures of water

quality with sanitary risk or management data [22].

Cost-effectiveness arguments suggest basing future monitoring

efforts on both regulatory and utility data and building monitoring

capacity especially in peri-urban and rural areas of low-income

countries. Special initiatives such as dedicated water safety surveys

(e.g., RADWQ) and integration of water quality testing in

household surveys are likely to play an interim role and will assist

in filling gaps in the available data [22].

Implications for Public Health Policy
Our review provides strong evidence that by equating

‘‘improved’’ with ‘‘safe,’’ the number of people with access to a

safe water source has been greatly overstated, and suggests that a

large number and proportion of the world’s population use unsafe

water. We analyze the implications following a framework of

health sector functions in environmental health [369] and

highlight key implications for policy in Box 1.

Policy makers. Health policy makers framing post-2015

goals for achieving universal health coverage and reducing the

global burden of disease need to ensure that targets and indicators

go beyond health care services and address underlying determi-

nants of health including progressive improvements in access to

safe drinking-water, sanitation, and hygiene services. Adequate

quantities of safe water at home are essential for good health [370]
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and, together with improvements in sanitation and hygiene,

considered one of the more cost-effective interventions to protect

and improve public health [371].

Through the process of implementing the MDGs, great strides

have been made in increasing coverage of improved water sources

although an estimated 783 million people still lack an improved

source, most living in sub-Saharan Africa and Southeast Asia [5].

This review confirms that there are also pronounced disparities in

access to ‘‘safe’’ water between and within countries. The Human

Right to Water and Sanitation calls for progressive reduction in

inequalities, and public health considerations suggest that reducing

exposure among the most vulnerable, including the poor,

undernourished, and immunocompromised, is a key public health

concern. Health policy makers therefore have an important role to

play in advocating for health protecting policies in other sectors,

including those by actors concerned with water supply services.

Standard setting for water quality. The health sector plays

a substantive role in drinking-water quality standard setting in

many countries; this is logical since the underlying rationale is

based on health concerns. The evidence presented here suggests

that failures in water safety are frequent in LMICs, and that

effective standard setting would combine outcomes measures (such

as the measurement of FIB) with the verification of preventive or

protective measures through sanitary inspection, water safety

plans, or similar approaches. Future standard setting should take

account of inequalities in access so as to direct efforts to those most

affected and be informed by the availability of effective interven-

tions.

Surveillance. The health sector also plays an important role

in environmental health including drinking-water quality surveil-

lance in many countries. However in many LMICs surveillance of

water quality is limited outside large consolidated urban centers

and enforcement of guidelines can be weak [372]. Surveillance is

typically weakest in rural areas where levels of access to ‘‘improved

sources’’ are lowest and the likelihood of contamination is greatest.

The lack of disaggregated data for peri-urban and urban slum

areas is also a problem in many countries. To-date the focus of

public health policy, targets, and monitoring has been a

household’s primary source of drinking-water [373], but there is

growing concern over inadequate water, sanitation, and hygiene

services in non-household settings, such as schools and health care

facilities [30,373]. A public health perspective suggests that health

sector surveillance should focus particularly on these settings

where the risk of exposure is high.

Health care settings. Ensuring adequate environmental

health in health care settings is a key responsibility of the health

profession [374], but in many countries access to water, sanitation,

and hygiene in health care facilities remains inadequate. While

data were few, those studies that addressed water safety in health

care settings documented water safety deficiencies [142,235].

Furthermore, nationally representative surveys of health care

facilities in Uganda and Rwanda found two-thirds of health care

facilities to lack an improved water source [375,376]. There are

also opportunities to better protect and improve health through

incorporation of water safety components in health programs such

as those focused on specific diseases [377] or sensitive life stages

such as maternal and child health [378]. Given the vulnerability of

the populations using them and the potential for health facilities to

serve as models for the wider community, the health sector has

both a duty of care and an opportunity to advance health through

better management of water safety in its own facilities.

Outbreak investigation. Despite clear evidence of its

prevalence, the global burden of disease attributable to fecal

contamination of drinking-water remains poorly understood. Data

on outbreaks of waterborne disease [19] and of the impact of

interventions to improve water quality on endemic disease [15,16]

provide evidence of the importance of fecal contamination. The

associated studies frequently provide only weak insight into causal

factors that might otherwise contribute to improved preventive

action. There is an opportunity to enhance current outbreak

investigation, advancing its role from one of curtailment to general

prevention, thereby improving the ability to retrieve information

that can be generalized for future prevention.

Waterborne disease burden. Study of the national and

global burden of disease provides an opportunity to enhance

public health protection and increase cost-effective action by

focusing efforts on disease burdens and risk factors of greatest

significance. The recent Global Burden of Disease study [379]

based its estimates on the assumption of zero risk for those

supplied by improved drinking-water sources and no additional

benefit of a piped supply on premises [354]. The findings of this

review indicate that fecal contamination of drinking-water is

widespread, particularly in rural areas and low-income countries.

Some improved source types, especially protected dug wells and

protected springs, are frequently and sometimes highly contam-

inated. Contamination reported in piped supplies in especially

rural but also urban areas is concerning given that these serve the

majority (63%; Table 1) of the world’s population and the use of

this source type is expanding rapidly in many countries, especially

in China [380]. In assuming improved sources are safe [379],

current estimates may greatly underestimate waterborne disease

burden and this gap would be expected to grow as improved

source coverage increases.

Implications for Research
We have applied analytical tools usually associated with the

medical sciences (meta-analysis of prevalence) to the study of

environmental contaminants. There are differences in the

Box 1. Key Implications for Policy

N Fecal contamination of drinking-water is widespread
globally, especially in low-income countries and rural
areas, and affects many improved sources.

N The Global Burden of Disease 2010 study may greatly
underestimate diarrheal disease burden by assuming
zero risk from improved sources.

N Adjustment of safe drinking-water coverage estimates
for water quality and ideally sanitary risk would highlight
disparities and enable improvements in quality to be
reflected in monitoring.

N Piped water is not a panacea: high levels of contamina-
tion have been reported in a range of settings and water
stored in the household, often motivated by an
intermittent or distant source, is more likely to be
contaminated, especially in rural areas.

N Quality and sanitary risks are heterogeneous indicating
that it is possible to substantially enhance safety and
reduce exposure through incremental improvements in
service.

N Greater use should be made of sanitary inspections as
these provide a complementary means of assessing
safety and are able to identify corrective actions to
prevent contamination.

N Studies of microbial contamination and sanitary risk
could be improved by adhering to higher standards,
including those outlined in our quality criteria.
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underlying data that merit highlighting and limit the transfer-

ability of these techniques. Firstly, robust sampling frames are

usually available for the selection of households (e.g., from

national statistical offices), but random selection of water sources

is more challenging. Studies such as RADWQ that adapted

stratified cluster sampling techniques used in household surveys

to address this problem have been subject to methodological

criticism [381]. Future directions to achieve representative

samples could include the use of water point mapping [382] or

satellite imagery to create lists of water points but both are

relatively complex and approaches based on population may be

more feasible. Secondly, whereas epidemiological studies seek to

measure outcome variables such as the number of events at a

given point in time (‘‘point prevalence’’) or the rate at which they

occur (‘‘incidence’’), environmental studies often seek to deter-

mine whether a threshold condition of safety has been exceeded

(‘‘compliance’’). Even brief failures in safety may negate much of

the potential health benefits of otherwise safe water [383,384]. As

a consequence, assessments of safety can be particularly

susceptible to the frequency of monitoring and temporal

representativity can be as important as spatial or population-

based randomization.

In order to assess levels of compliance with regulatory

standards or international guidelines based on infrequent

surveys or limited data, research is required to understand

the effect of repeated sampling of both source and stored water

that results from variability over time (e.g., seasonality) and

replicate sampling (sequential testing). Given their potential to

inform assessments of safety, there is also a need to improve

understanding of the relative importance of sanitary risks and

their temporal variation for which very limited data are

currently available. There is unlikely to be a simple correlation

between sanitary risks and microbial contamination [103,209]

but the predictive value of sanitary risks may be much higher

when accounting for compliance over time because some

infrastructure failures will only lead to contamination in the

presence of a co-factor such as rainfall. There is also a need to

better understand the role of water collection and storage on

microbial contamination and the associated risk to health.

We find strong evidence of differences in water quality

between rural and urban areas, including for piped supplies.

Further work is needed to characterize intra-urban differences;

we encourage randomized water quality surveys to include

slum or peri-urban populations as part of the sampling frame.

Finally, the approaches taken in this review could be extended

to other drinking-water contaminants, such as arsenic and

fluoride.

Conclusions

Fecal contamination of drinking-water in LMICs is wide-

spread. We demonstrate that improved sources are in general

safer than unimproved sources of drinking-water, but they are

not universally nor consistently free of fecal contamination. In

38% of 191 studies at least a quarter of samples from improved

sources exceeded WHO recommended levels of FIB. By

equating ‘‘use of an improved source’’ with ‘‘safe,’’ interna-

tional estimates greatly overstate access to safe drinking-water.

Substantial differences are observed in the presence and levels

of contamination between countries, between urban and rural

regions, and between water source types. Infrequent measure-

ments of water quality alone tend to overestimate safety and so

an improved future strategy would combine sanitary status

with water quality measurements.
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Qualidade microbiológica de águas minerais não carbonatadas em embalagens

de 1,5 litros, comercializadas em araraquara-sp. Alim Nutr 19: 421–425.

129. Ferguson AS, Layton AC, Mailloux BJ, Culligan PJ, Williams DE, et al. (2012)

Comparison of fecal indicators with pathogenic bacteria and rotavirus in

groundwater. Sci Total Environ 431: 314–322.

130. Ferretti E, Bonadonna L, Lucentini L, Della Libera S, Semproni M, et al.

(2010) A case study of sanitary survey on community drinking water supplies

after a severe (post-Tsunami) flooding event. Annali Dell Istituto Superiore Di

Sanita 46: 236–241.

131. Fiore MM, Minnings K, Fiore LD (2010) Assessment of biosand filter

performance in rural communities in southern coastal Nicaragua: an evaluation

of 199 households. Rural Remote Health 10: 1483.

132. Flores-Abuxapqui JJ, Suarez-Hoil GJ, Puc-Franco MA, Heredia-Navarrete

MR, Vivas-Rosel MD, et al. (1995) Bacteriological quality of drinking water in

the City of Merida, Mexico. Salud Publica Mex 37: 236–239.

133. Frischknecht DS (2006) Análise de NMP de coliformes em águas minerais
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Editors’ Summary

Background. Access to clean water is fundamental to
human health. The importance of water to human health
and wellbeing is encapsulated in the Human Right to
Water, reaffirmed by the United Nations in 2010, which
entitles everyone to ‘‘sufficient, safe, acceptable and
physically accessible and affordable water for personal
and domestic uses.’’ A step towards such universal access
to water is Millennium Development Goal (MDG) target 7c
that aims to halve the proportion of the population
without sustainable access to safe drinking-water. One of
the indicators to help monitor progress towards this target
used by the Joint Monitoring Project (JMP—an initiative of
the World Health Organization and UNICEF) is ‘‘use of an
improved source.’’ Improved sources include piped water
into a dwelling, yard, or plot, or a standpipe, borehole, and
protected dug well. Unimproved sources are those that do
not protect water from outside contamination, such as
unprotected wells, unprotected springs, and surface
waters.

Why Was This Study Done? While this simple categori-
zation may reflect established principles of sanitary protec-
tion, this indicator has been criticized for not adequately
reflecting safety, suggesting that reported access to safe
water might be overestimated by billions of people by not
accounting for microbial water safety or more fully account-
ing for sanitary status. So the researchers conducted a
systematic review and meta-analysis to investigate whether
water from improved sources is less likely to exceed health-
based guidelines for microbial water quality than water from
unimproved sources and to what extent microbial contam-
ination varies between source types, between countries, and
between rural and urban areas.

What Did the Researchers Do and Find? The researchers
comprehensively searched the literature to find appropriate
studies that investigated fecal contamination of all types of
drinking-water in low and middle-income countries. The
researchers included studies that contained extractable data
on Escherichia coli or thermotolerant coliform (the WHO
recommended indicators of fecal contamination) collected
by appropriate techniques. The authors also assessed studies
for bias and quality and used a statistical method (random
effects meta-regression) to investigate risk factors and
settings where fecal contamination of water sources was
most common.

Using these methods, the authors included 319 studies
reporting on 96,737 water samples. Most studies were from
sub-Saharan Africa, southern Asia, or Latin America and the
Caribbean. They found that overall, the odds (chance) of
contamination within a given study were considerably lower
for ‘‘improved’’ sources than ‘‘unimproved’’ sources (odds
ratio = 0.15). However, in 38% of 191 studies, over a quarter
of samples from improved sources contained fecal contam-
ination. In particular, protected dug wells were rarely free of
fecal contamination. The researchers also found that water
sources in low-income countries, and rural areas were more
likely to be contaminated (both had odds ratios of 2.37).

What Do These Findings Mean? These findings show
that while water from improved sources is less likely to
contain fecal contamination than unimproved sources, they
are not consistently safe. This study also provides evidence
that by equating ‘‘improved’’ with ‘‘safe,’’ the number of
people with access to a safe water source has been greatly
overstated, and suggests that a large number and propor-
tion of the world’s population use unsafe water. As studies
rarely reported stored water quality or sanitary risks, the
accuracy of these findings may be limited. Nevertheless, the
findings from this study suggest that the Global Burden of
Disease 2010 may greatly underestimate diarrheal disease
burden by assuming zero risk from improved water sources
and that new indicators are needed to assess access to safe
drinking water. Therefore, greater use should be made of
other measures, such as sanitary inspections, to provide a
complementary means of assessing safety and to help
identify corrective actions to prevent water contamination.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001644.

N PLOS Medicine has a published series on water and
sanitation

N The WHO/UNICEF Joint Monitoring Programme for Water
Supply and Sanitation has extensive information including
data and country files

N UN Water is the inter-agency coordination mechanism for
all freshwater and sanitation related matters

N The UN also provides information on the human right to
water and sanitation
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